

Shuswap Falls, near site of proposed development of Coteau Hydro-Electric Company.

DEPARTMENT OF THE INTERIOR, CANADA WATER POWER BRANCH
J. B. CHALLIES, Superintendent

WATER RESOURCES PAPER No. 8

REPORT

OF THE

BRITISH COLUMBIA HYDROGRAPHIC SURVEY

FOR

THE CALENDAR YEAR 1913

BY
R. G. SWAN, A. M. Can. Soc. C. E.

Chief Engincer.

[^0]To Field Marshal, His Royal Highness Prince Arthur William Patrick Albert, Duke of Connaught and of Strathearn, K.G., K.T., K.P., etc., etc., etc., Governor General and Commander in Chief of the Dominion of Canada.

May it Please Your Royal Highness:
The undersigned has the honour to lay before Your Royal Highness the British Columbia Hydrographic Survey Report for 1913.

Respectfully submitted,

W. J. ROCHE,
Minister of the Interior.

Ottawa, July 1, 1914.

Department of the Interior,
Ottawa, July 1, 1914.
The Honourable W. J. Roche, M.D.,
Minister of the Interior.
Sir, - I have the honour to submit the British Columbia Hydrographic Survey Report for 1913, and to recommend that it be published as Water Resources Paper No. 8 of the Dominion Water Power Branch.

I have the honour to be, sir,
Your obedient servant,
W. W. CORY,

Deputy Minister of the Interior.

Department of the Interior,
 Water Power Branch,

Ottawa, July 1, 1914.
W. W. Cory, Esq., C.M.G.,

Deputy Minister of the Interior.
Sir,-I have the honour to submit the attached report by R. G. Swan, A M. Can. Soc. C.E., Chief Engineer of the British Columbia Hydrographic Survey.

In view of its important bearing on the industrial development of Southern British Columbia I would recommend that it be published as Water Resources Paper No. 8 of the Dominion Water Power Branch.

Respectfully submitted,
J. B. CHALLIES,

Superintendent, Dominion Water Power Branch.

Ottawa, July 1, 1914.
J. B. Challies, Esui.,

Superintendert,
Dominion Water Power Branch,
Department of the Interior, Ottawa.

Sir,-I have the honour to submit a brief report of the British Columbia Hydrographic Survey for the year 1913, together with the reports of the divisional engineers.

Allowance should be made for the fact that the reorganization, following the agreement between yourself and Mr. Wm. Young, Comptroller of Water Rights Victoria, B.C., regarding the gradual extension of territory of the Hydrographit Survey work by the Dominion Government from the Railway Belt to cover the entire province is still in progress. This agreement was only finally effected in September last by the formal approval of both Governments.

I have the honour to be, sir,
Your obedient servant,
R. G. SWAN,

Chief Engineer.

TABLE OF CONTENTS.

I.
Parie:
Report of the Chief Engineer 3
Organization :3
Nature and Extent of Work 3
Change in work due to amendment of Water Act assented to 6 th of June, 1913 3
New Work entered into in new divisions 4
List of Regular Metering Stations 5
Miscellaneous Meterings. 7
Outline of work for next year 8
Definition of terms 9
Convenient equivalents 9
General Methods of Stream Measurements 9
Acknowledgements. 10
II.
Coast Diviston
Report of the Divisional Engineer 13
Climate 14
Agriculture 14
Irrigation 15
Reclamation 16
Lumbering 16
Fishing 18
Sewage Disposal 19
Industrial Waste. 19
Transportation 19
Mining $\because 1$
Manufacturing 21
Water Powers 22
Plants on Streams investigated within the Railway Belt 22
Developed Power Sites on Streams outside the Railway Belt 22
Undeveloped Power Sites 23
Nunicipal Water Supply 25
Conclusion 26
Report of the Divisional Engineer 29
Area. 29
Climate. 29
Natural Resources 30
Mining. $: 31$
Lomberme and (tilization of Water. :31
Agricultural Land and Irrigation 31
Municipal Water Supply. 33
Water Power Developments :3:
City of Kamloops Plant on Barriere River :3:
Other Small Developments 34
Future Developments 34
IV.
Kootenay Boundary Division
Page.
Report of the Divisional Engineer 41
General 41
Area and Drainage 41
Climatic Conditions 41
Run-off 42
Utilization of Water 43
Mining 43
Timber 46
Irrigation 46
Domestic and Municipal 47
Hydro-electric Developments 47
Hydrographic Data 49
General Characteristic 49 49
Resumé of proposed work for 1914 49
V.
Hydrographic Data-Coast Division.
Belknap Creek 53
Boulder Creek 58
Brandt Creek 60
Chehalis River 68
Chilliwak River. 72
Coquihalla River 76
Coquitlam River 79
Fraser River 81
Gold Creek 90
Hixon Creek 93
Jones Creek 98
Mesliloet River 105
North Lillooet River 110
Norton Creek 113
Rainbow Creek 118
Raven (Rushton) Creek. 122
Silver-Hope Creek 127
Silver-Pitt Creek 131
South Lillooet River 135
Stave River 138
Young Creek. 143
Miscellaneous Metering Stations 147Hydrographic Data-Kamloops Division.
Adams River 163
Barnes Creek 166
Bolean Creek 169
Bonaparte River 172
Campbell Creek 177
Cherry Creek 179
Coldwater River 183
Criss Creek 185
Deadman River 188
Eagle River 194
Essel Creek 197
Fraser River 199
Greenstone Creek 203
Guichon Creek 205
Hat Creek 207
Hefferley Creek 21.
Ingram Creek 222
SESSIONAL PAPER No. 25f
Hydresiraphic Data Kimenope Ditision ('ontimul.
Page.
Jacko Creek. 2.4
Jamieson Creek. 206
Louis Creek 229
Monte Creek 23.3
Nahatlatch River 233
Nicola River. $\because 46$
Niskonlith Creek. 25.3
Paul Creek 255
Shuswap River 259
Scottie Creek 264
Spius Creek 267
Stein Creek 271
Thompson River 273
North Thompson River 288
South Thompson River 285
Tranquille River. 288
Miscellaneous Metering Stations 291
VII.
Hydrographic Data-Kootenay Bouxdary Divisiox.
Akolkolex River 29.5
Beaver River. 300
Blaeberry River 303
Bugaboo River 305
Columbia River 308
Horsethief Creek 320
Illecillewaet River. 322
Kicking Horse River 329
Kootenay River 339
Ňo. 2 Creek $34: 3$
Ottertail River 346
Pend d'Oreille River 349
Slocan River. 352
Spillimacheen River. 35.3
Toby Creek 356
Yoho River. 338
Miscellaneous Metering Stations 360
Index $36: 3$

ILLUSTRATIONS.

Shuswap falls near site of proposed Development of Coteau Hydro-Electric Develop-Ireclamation, Pitt Meadows Dyke South of Sturgeon Slough.................................. 13
Reclamation, Pitt Meadows Dyke South of Sturgeon Slough13
Reclamation, Pitt Meadows, Pump House and Sluice Gates. 15
Reclamation, Pitt Meadows looking North of Sturgeon Slough showing flooded land to be reclaimed 16
Reclamation, Pitt Meadows, Dyke and Sluice Gates 17
Reclamation, Pitt Lake from mouth of Raven Creek 18
Foreshore, Pitt River 20
Upper Columbia Valley, Bottom Lands near Wilmer, B.C 31
32
Myrtle River, Helmeklen falls clear drop of 450 feet 34
Barriere river, Intake Dam, City of Kamloops development 35
Shuswap river, Coteau Hydro-Electric Company's development, Dam Site 36
Shuswap river, Coteau Hydro-Electric Company's development, Dam Site 37
Illecillewaet river, Revelstoke Light \& Power Company's Dam. 48
Chilliwak river, Metering Station at Indian Dugout 73
looking downstream past Gauging Station 73
Fraser river at Hope, B.C., Gauge painted on Rock face 80
Fraser river at Hope, B.C., looking upstream from gauge 80
Raven creek Metering Station 124
Gravel deposits at Mouth 125
Stave river, Western Canada Power Company, Weir Measurements through sluice Dam. $1: 3$
Seymour river, falls 5 miles from the settlement of Seymour Arm 35 feet drop 158
Adams river, Adams river Lumber Company below Adams Lake 164
Louis creek, Undershot Wheel and Sawmill 230
Spius creek, Metering Station 269
Thompson river at Spences Bridge (Metering station) 274
Akolkolex river near Wigwam, B.C., Upper falls 296
"، ${ }^{\circ}$ Lower falls. 297
" looking upstream from above falls 298
Kicking Horse river looking upstream from natural bridge 329
Kicking Horse river near Field, B.C. looking upstream from foot of Canyon 333
Takakaw falls, Yoho Valley near Field, B.C 359

MAP.

Southern British Columbia, showing Gauging Stations Inside back cover.

REPORT

BRITISH COLUMBIA HYI)ROGRAPHIC SURVEY FOR 1913

CHAPTER I

REPORT OF R. (i.SWAN, A.N. CAN゙. SOC. ('.E.
Chicf Engineer.

CHAPTER I.

REPORT OF THE CHIEF ENGINEER.

ORGANIZATION.

The personnel of the staff for 1913 was as follows:-
P. A. Carson, B.A., D.L.S., Chief Engineer (resigned July 31, 1913).
R. G. Swan, A.M. Can. Soc. C.E., Assistant Chief Engineer, June 1 to September 30; Chief Engineer, October 1.
E. M. Dann, D.L.S., Divisional Engineer.
C. G. Cline, Jr. Can. Soc. C.E., D.L.S., Divisional Engineer.
C. E. Richardson, A.M. Can. Soc. C.E., Divisional Engineer.
K. G. Chisholm, Assistant Engineer.
H. J. E. Keys, B.A. Assistant Engineer.
C. E. Webb, Assistant Engineer, from October 28, 1913.
J. A. Elliott, summer assistant (May 4 to September 17, 1913).
H. C. Hughes, summer assistant (May 13 to August 23, 1913).
A. T. Milner, clerical assistant from August 27, 1913.

Miss B. B. Aılan, stenographer.
Miss W. M. Robinson, stenographer, from November 15, 1913.
The organization for the first nine months of the year was very similar to that of previous years and, although the work was still confined to the Railway Belt, a large number of new stations were established.

The Railway Belt at this time was divided into three divisions; Messrs. (line and (hionlm were in charge of the distried from the coate (eat to)) eadman river; for five months during the summer period, Mr. Hughes was stationed at Indian river, rating the stations on the different streams in comenection with the proposed development of the New Westminster Power Co. Mr. Keys was in charge of the district extemeling from the Deadman river east to gramd Prairie: Mr. Richardson was in charge of the district from Grand Prairie to the eastern boundary of the province, with Mr. Elliott as a summer assistant on account of the large number of new stations established in this division.

Owing to Mr. Carson's frequent absences on inspection trips, Mrr. Dann was atationed in the head office at Kambons, having chate withe offere from the first of the year until Mr. Carson's resignation. Mr. Dann was also in charge of special work in regard to streams tributary to the Shuswap lakes.

NATURE AND EXTEN'I OF WORK.

CHAN゙GE IN WORK DUF TO THE AMENDMENT OF THE WATER AC'T ASSENTED TO 6 th June, 1913.
With the passing of the amendment to the Water Act the administration of all water within the Railway Belt passed under the exclusive control of the provine of British Columbia, and the investigation into the water righte sitnat tion in the dry belt wateramed on by the di-t riot memeers of the Water Righte Branch. Department of Lamds. Viotoria, B.(… than allowing the Hydrographie Survey staff greater time for the extension of the study of the water supply athd resources of the Railway Belt. For the same reaton it has been posible (1) carry on the inspection of land applications umder irrigation and redamation eonditions, and applimations for foreshore righto. in a murh more thorongh mammer than heretofore.

NEW WORK ENTERED INTO IN NEW DIVISIONS.

Following the agreement between yourself and Mr. Wm. Young, Compttroller of Water Rights, Department of Lands, Victoria, B.C., regarding the extension of territory of the Railway Belt Hydrographic Survey so that it will ultimately cover the entire province, and which agreement was finally given effect in September by the formal approval of both Govermments, the following changes have been made in the organization of the work.

The title of the work has been changed from the "Railway Belt Hydrographic Survey" to the "British Columbia Hydrographic Survey," and the office of the chief engineer has been removed from Kamloops to Vancouver. The territory of the province has been divided for the present into three main divisions, with headquarters at Kamloops, New Westminster, and Nelson, where permanent office quarters have been provided for the division engineers of the respective divisions, namely, Mr. E. M. Dann, D.L.S., Mr. ('. E. Richardson, A.M. Can. Soc. C.E., and Mr. C. G. Cline, Jr. Can. Soc. C.E., D.L.S.

In making the division of the province the mountain divides were followed, and the drainage areas, where possible, were kept intact.

Many new conditions arising from all these changes have affected the efficiency and effectiveness of our work and, owing to the lack of funds. rery little new work has been undertaken exeept at the request of Mr. Young and co-operating parties. Now that the various division offices are becoming well organized, a good year's work should be accomplished if the staff required is made arailable.

COAST DIVISION.

C. G. Cline, Divisional Engineer.

At the request of the Bridge River Power Co., the maintenancer of the station established by them on the Bridge river has been taken over by the surver.

As the province are making extensive surveys with regard to storage posbiilities for the water supply of Greater Vancouver, stations were established on Lynn, Capilano, and Seymour rivers.

In Pemberton Meadows, surveys are being made in connection with a project covering the drainage of land through which the Lillooet river flow: and, as it is necessary to provide for the control of this river, a station was established. On Green and Cheakamus rivers there are good power possibilities and, as there have been several requests for data on these rivers, gatuging stations were estahlished at the same time as the station on the Lillooct river.

KAMLOOPS DIVISION.

E. M. Dann, Divisional Engineer.

By the time the arrangements for enlarging the work were completed, the season was so far advanced that it was practically impossible for Mr. Dam to catahlish any new stations in his division. He has, however, covered most of this territory, and will be able to make a vigorous start on this work in the spring. Many of the irrigation streams in the division are over-reeorded, so that a very thorough study of the run-off must be made.

NELSON DIVISION.

C. E. Richardson, Divisional Engineer.

Previous to the time of the reorganization, Mr. Richardson's work in British C'olumbia had extended outwide the Railway Belt. He had mate several

SESSIONAL PAPER No. $25 f$

trips with Mr. Biker, the Provincial Engineer, through the country in the vicinity of Nelson in connection with the proposed \backslash. Kiay reclamation scheme on the Upper Columbia, which required the estahbishent of several stations on the rivers tributary to the Columbia in the Windermere district, and as a result Mr. Richardson was familiar with a harge part of this division before his transer to Nelson.

During the fall, stations were established on the Columbia, Pend d'Oreiile, Elk Bull, and Kootenay (two stations) rivers.

METERING STATIONS.

The following lists give: first, the regular metering stations; and second, rivers on which miscellaneous measurements have been made.

Coast Division.-List of Regular Metering Stations.

No. of Station.	River.	1.anation.
1000	Belknap creek at Belknap lake	
1001	Boulder creek.........	Tp. 3, R. 27, W. 6 M .
1002	Brandt creek lower	Tp. $7, \mathrm{R}, ~ 7, W .7 \mathrm{M}$
1003	Chehalis river.	Tp. 4, R. 30.11 .6 M .
1004	Chilliwack river	
1005	Coquihalla river	Tp. 5, R. - 6.11 .6 M .
1006	Coquitlam river	Tp. 5, R. ¢, W. 7 M .
1008	Fraser river	Tp. ${ }^{5}, \mathrm{R}, 26, \mathrm{~W}, 6 \mathrm{M}$
11014	Hixon creek, near mouth.	
10111	Jones creek.	Tp. 3, R. 27. W. 6 M .
1011	Mesliloet river	Tp. 7, R. $7 . W .7 \mathrm{M}$.
1012	North Lillooet river	Tp. 12,E. 1 (11.
1013	Norton creek	Tp. \quad, R. $7, W$, M .
1014	Rainbow creek	Th. (i, R. 4, W. 7 M
1015	Raven (Rushton) creek	Tp. $5, \mathrm{R}$. \&. 11.711.
1016	Silver creek (near Hope)	
1017	Silver creek (tributary Pitt river)	Tr. 4, R, , 11. 711.
101.	South Lilloooet river..........	
11919	Stave river.	Tp. 4, R. $3,11.71$.
109	Young creek	Tp. $7, \mathrm{R}$. $7 . W . \mathrm{I}$.
1021	Brandt creek, upper	

Kamloops Division.-List of Regular Metering Stations.

No. of station.

2000.	Adams river.
2001	Barnes ereek
2002..	Bolean creek.
2003.	Bonaparte river
2004	Campbell creek.................
2005.	Cherry creek..................
2006.	Coldwater river, Merritt.....
2007	Criss creek...............
2008.	Deadman river.....
2009 .	Deadman river.....
2010.	Eagle river.
2011.	Fissell creek
2012.	Fraser river.
2013.	Greenstone creck
2014.	Guichon creek, Mamit laka.....
2015.	Hat creek...............
2016.	Hat creek.
2017.	Hat creek.
2018.	Hefferley creek
2019	Hefferley creek.
2020 .	Ingram creek...
2021.	Jacko creek.
2022.	Jamieson creek
2023.	I,ouis creek.
2024.	Monté creek
2025.	Monté creek
2026.	Monté creek.
2027	Nahatlatch river, lower station.
2028	Nahatlatch river, upper station.
2029	Nicola river, Merritt...........
2030.	Nicola river
2031.	Niskonlith creek
2032	Paul creek.
2033.	Paul creek.
2034.	Shuswap river.
2035.	Shuswap river, Lumby.
2036.	Scottie creek.........
2037.	Spius creek.
2038.	Stein creek.
2039.	Thompson river
2040.	Thompson river.
$\because 041$	North Thompson river.
2042 .	South Thompson river.
2043.	Tranquille river.......

Lur:1tirn.

Tp. 23, R. 12, W. 6 M.
Tp. 20, R. 24, W. 6 M.
Tp. 18, R. 12, W. 6 M.
Tp. 21, R. 24, W. 6 M.
Tp. 19, R. 16, W. 6 M.
Tp. 19, R. 19, W. 6 II.
Water District No. 3.
Tp. 22, R. 22, W. 6 II.
Tp. 22, R. 22, W. 6 MI
Tp.21, R. 22, W. 611.
Tp. 23, R. 6, W. 6 M .
Tp. 17, R. 14, IV. 6 M.
Tp. 15, R. 27, W. 6 M.
Tp. 17, R. 20, W. 6 M .
Water District No. 3.
Tp. 22, R. 25, IV. 6 M.
Tp. 19, R. 26, W. 6 II.
Tp. 19, R. 26, W. 6 M .
Tp. 22, R. 17, W. 6 M .
Tp. 22, R. 16, W. 6 M.
Tp. 17, R. 13, W. 6 M.
Tp. 19, R. 18, IV. 6 M.
Tp. 22, R. 17, W. 6 M.
Tp. 23, R. 15, W. 6 M.
Tp. 19, R. 15, W. 6 M.
Tp. 18, R. 14, W. 6 MI.
Tp. 18, R. 14, W. 6 M.
Tp. 2, R. 26, W. 6 M.
Tp. 12, R. 27, W. 6 M.
Water District No. 3.
Tp. 17, R. 25, W. 6 M.
Tp. 21, R. 13, W. 6 M .
Tp. 20, R. 15, W. 6 M.
Tp. 20, R. 15, W. 6 M.
Tp. 18, R. 9, W. 6 II.
Water District No. 4.
Tp. 23, R. 25, W. 6 MI .
Tp. 13, R. 23. W. 6 M
Tp. 15, R. 27, W. 6 М
Tp. 17, R. 25, W. 6 M
${ }^{\prime}$ Tp. 17, R. 20, W. 6 M
Tp. 21, R. 17, W. 6 M
Tp.21, R. 13, W. 6 N
Tp.23, R. 13, W. 6 M

Nelson Division.-List of Regular Metering Stations.

River.
Lacation.

3000	Akolkole river.	Tp. 21, R. 1, W゙. 6 M
3001	Beaver river	Tp. 29, R. 25, W. 5 M
3002	Blaeberry river	Tp. 28, I2. 22, W. 5 II
3003	Bugaboo creek, Spillimacheen.	Water District No. 8.
3004	Columbia river, near Golden	Tp. 27, R. 22, W. 5 M
3005	Columbia river, at Revelstoke	Tp. 23, R. 2, W. 6 M
3006	Columbia river, at Castlegar.	Water District No. 6.
3007	Columbia river, at Trail	Water District No. G.
3008	Horsethief creek, at Wilmer	Water District No. S.
3009	Illecillewaet river, at Revelstoke	Tp. 23, R. 2, W. 6 M
3010	Illecillewaet river, at Glacier	Tp. 26, R, 26, W. 5, M
3011	Kicking Horse river, at Golden	Tp. 27, R. 22, W, 5 M
3012	Kicking Horse river, at Field.	Tp. 28, IR. 18, W. 5 .
3013	Kicking Horse, No. 2 tunnel	Tp. 28, R. 18, W. 5 M
3014	Kootenay river, at Glade.	Water District No.fi.
3015	No. 2 creek, at Wilmer	Water District No.s.
3016	Ottertail river	Tp. 27, R. 19, W. 5 M
3017	Pend d'Oreille river, at Waneta.	Water District N゙o.6.
3018	Slocan river at Slocan	Water District No. i .
3019	Spillimacheen river, at Spillimacheen.	Water District No.s.
3020	Toby creek, at Athalmere	Water District No. ¢.

miscellaneous metering stations.

Miscellaneous meterings were taken on the following rivers and ereeks:-

```
(OACT DINISION MGCELLANEOLS METERING STATHONS.
```

Belknap, Bridge, Capilano, Cheakamus, Green, Hixon, Lillooet, Lynn, Seymour, Slollicum.

Kamloops division.-Miscellaneous metering stations.
Bear, Campbell, Cache, Cornwall, Cleme's, Dairy, Duffy, Eagle, Eightmile, Fortunes, Fadear, Gordon, Highfalls, Mission, Murray, Maiden, Nelson, Oregon Jack, Power, Ross Ray, Scotch, Shuswap, Seymour, 'Three-mile, Tulameen, 'Twenty-mile, 'Twall, Venables.

NELSON DIVISION.-MISCELLANEOUS METERING STATIONS.
Incomappleux, Yoho.
Many of the metering stations were established too late in the fall to get a sufficient number of measurements to plot the hydrographs from which the daily flow data are computed. The available data on these rivers are recorded as miscellaneous measurements.

The stations on these rivers will be maintained during the coming year as regular metering stations.

OUTLINE OF WORK FOR NEXT YEAR.

Up to the present time the yearly appropriation has not been sufficient to maintain the engineers in the field during the winter months. A few miscellancous winter measurements have been taken, but there are no complete yearly run-off records except on those rivers in the ('oast division which do not freeze up. From the time the surver was organized, a particularly thorough study has been made of the irrigation streams in the dry belt, and for the last three years the data on these streams, during the irrigation period, are very complete.

In the Nelson division the climate is humid, and little water is used for irrigation, the more important uses of water being for power, lumbering, and municipal water supply. It is readily seen that only seven or eight months run-off records for each year greatly limit the value of these data. The situation as regards power and municipal water supply in the Kamloops division is much the same and, although the power possibilities may not be so great as in the Nelson division they are equally in portant. If the appropriation for the survey is: sufficient, it is my intention to have the engineers who are making a study of power and municipal water supply, maintained in the field during the entire year.

To keep pace with the increasing demand for hydrographic data, it is essential that the staff be sufficiently increased to maintain nine hydrographic parties in the field. New lines of railroad are rapidly opening up new country which will, in the near future, demand the utilization of the water resources.

Transportation has been the big item in the maintenance of the parties in the field, and this, I think, should be minimized if the territory to be covered in the different divisions be divided as follows, and worked from the most central city or town.

COAST DIVISION.

(1) Vancouver to cover Railway Belt and south to the boundary.
(2) Victoria to cover Vancouver island and territory north along the coast of the province.
(3) Lillooet to cover the territory along the Pacific Great Eastern.

KAMLOOPS DIVISION.

(1) Kamloops to cover the local irrigation streams, the rivers along the ('anadian Northern ralway to Yellow Head pass and the rivers tributary to Shuswap lake.
(2) Asheroft to cover the rivers in Asheroft and Merritt vicinity.
(3) Penticton to cover Okanagan river and its tributaries.

NELLSON DIVISION.
(1) Golden to cover Upper Columbia river and tributaries.
(2) Nelson to cover Lower Columbia river and Kettle river and their tributaries.
(3) Cranbrook to cover Kootenay river and tributaries.

DEFINITION OF TERMIS.

The volume of water flowing in a stream-rum-off or discharge is expressed in various terms, each of which has become associated with a certain class of work. Some of the terms generally used are: "Second-feet," "gallons per minute," "discharge in second-feet per square mile," "Run-off depth in inches on drainage area," and "total run-off in acre-fect."
"Second-feet" is an abbreviation for cubic feet per second, and is the unit for the rate of discharge of water flowing in a stream 1 foot wide, 1 foot deep, at the rate of 1 foot per second.
"Second-feet per square mile" is the average number of cubic feet of water flowing per second for each square mile of drainage area.
"Run-off in inches" is the depth by which the drainage area would be covered if all the water flowing from it were uniformly distributed on the surface. It is used for comparing run-off with rainfall, which is usually given in inches.

An "foot-acre" is equivalent to 43,560 cubic feet, that is, the quantity required to cover an acre to the depth of 1 foot, and is commonly used in connection with storage.

CONVENIENT EQUIVALENTS.

The following is a list of convenient equivalents for use in hydraulic computations:-

1 second-foot equals 6.24 British imperial gallons per second.
1 second-foot equals 7.48 United States gallons per second.
1 second-foot for one day covers 1 square mile 0.03719 inch deep.
1 second-foot for one day equals 1.983 acre-feet.
1 acre-foot equals 325,850 United States gallons.
1 inch deep on 1 square mile equals $2,323,200$ cubic feet
1 acre equals 43,560 square feet.
1 cubic foot equals 6.24 gallons.
1 cubic foot of water weighs 6.24 pounds.
1 horse-power equals 550 -foot pounds per second.
1 horse-power equals 1 second-foot falling 8.80 feet.
1 horse-power equals 746 watts.
$1 \frac{1}{3}$ horse-power equals about 1 kilowatt.
sec.-feet x fall in feet
To calculate water-power quickly \quad net korse-power 11
on water wheel realizing 80 per cent of theoretical power.

GENERAL METHODS OF STREAMI MEASUREMENTS.

In measuring the flow of streams the basic assumption is that the discharge of the stream varies with the stage, or in other words that for a given stage there is a corresponding discharge. Where this relation holds, it is possible,
 stages, to plot a curve which will give the relation between stage and discharge. Having determined such a relation, it is only necessary to take daily records of the stage of the stream in order to compute the daily discharge.

The stage of the stream is measured by some form of stream gauge which gives the elevation of the surface of the water above a fixed datum. The types of gauges in use by this survey are the staff gauge, the chain gauge, and the recording gauge. The vertical staff gauge is used wherever possible. In some cases, however, where it is impossible to use a staff gauge, a chain gauge or a

The standard method for the measurement of discharge is by the use of the (rurent-meter. The instrument used is the small Price electric current-meter (No.623, manufactured by W. \& L. E. (iurley, Troy, N.Y.). In this method the area of the section is determined by taking soundings at measured intervals across the stream, the mean velocity is determined by a series of readings of the current-meter, and from these two sets of measurements the discharge is calculated.

Occasionally circumstances arise under which it is permissible to we other methods for measuring discharge. In rery small irrigation ditches, where the cross-sectional area of the water would greatly disturb the natural flow, an approximate measurement can be made by means of surface-floats. The surfaceflome method is occasionally used for the measurement of flood discharges in rery large streams where, owing to the high velocity, the ordinary equipment could not be used.

From investigations made by this survey on the larger streams in this province, the average velocity ranges from 0.8 .5 to 0.90 of the surface relocity, so that the mean surface velocity in feet per second, multiplied by the crosssectional area in square feet, multiplied by a constant K (the said constant ranging ats stated above from 0.85 to 0.90) is equal to the dischatge in seeondfeet.

The weir method might be used occasionally on very small irrigation -treams, provided it is placed in such a position as not to affect the level of the Water at the existing gatuge. On the larger streams, the expense of constructing the weir for measurement purposes only, is too great, and there are very few dams in the province which could be so used. The use of weirs for obtaining the daily discharge of a stream is not recommended on account of the greater aceuracy necessary in taking the readings, the errors introduced by material logging against the crest and the difficulties of getting a weir that will be accurate at all stages of the stream. Nevertheless where the person who is to take the daily readings thoroughly understands all the requirements necessary for accurate weir measurements, this method gives very good results.

ACKNOWLEDGMIENTS.

For the courtesy extended in the compilation of the data for this report, special thanks are due the following:-
(i. R. (i. Conway, Chiof Engineer of the British Columbia Electric Ratway;
R. G. Hayward, Chief Engineer of the Western Canada Power Co;
A. R. MacKenzie of the Couteau Power.Company;

Wm. Young, Comptroller of Water Rights, Victoria;
W. R. Bonnycastle, Consulting Engineer; and others;

REPORT

() ${ }^{\circ}$

BRITISH COIUMBIA HYI)ROGRAPHIO SURVEY FOR 1913

CIIAPTER 2
Coast Division
REPORT OF C. G. CLINE, Jr. CAN. SOC. ('.E. D.I.A...
Divisional Engineer

CHAPTER II

COAST DIVISION.

The division of the province for the work of the British Columbia Hydrographic survey has been made with a view to facilitating the work as much as possible. Dramage areas have been kept intact as nearly as posible, the dividing lines following the watersheds. For this reason it is difficult to definitely describe the houndaries of the Coast division, but they may be readily seen hy referring to the map accompanying this report.

The hydrographic work on the streams in the Railway Belt, which was commenced in 1911 and 1912, has been continued, and there are now two years complete records for many of them. In addition to this work, regular stations have been established on a number of streams outside the Railway Belt, including those at North Yancouver and those between Squamish and Lillooet near the route of the Pacific Great Eastern railway. Nost of these streams are listed under " Discellaneous Measurements" having regular stations, and will appear as such in the 1914 report wherever sufficient meter measurements have been taken to relate the gauge readings to the discharge.

A considerable amount of work has already been done on Vancouver island by the engineers of the Water Rights Branch of the Provincial Government and the results of their work is contained in the 1913 report of that branch. It is expected that the stream measurement on the island in 1914 will be done he the British (odumbia Hydrographic surver while, in addition to this new work. it is expected that a number of new stations will be established in the Coast division, particularly in the vicinity of Lillooet. The measurements and records on the older stations and on the new ones already established will be continued, and their accuracy and reliability increased wherever possible.

Reclamation-Pitt Meadows Dyke South of Sturgeon Slough.

A general description of the main characteristics of this part of the province is here given, special attention being paid to all matters pertaining to the use and control of the streams. Following the general deseription is the information and data on the individual streams.

Reclamation-Pitt Meadows Drke South of Stureron Slough.

CLIMATE.

The climate of Vancouver island and the coast generally, corresponds very closely with that of England; the summers are fine and warm, with bright sunshine, and severe frost scarcely ever occurs in winter. On the mainland, similar conditions prevail till the higher levels are reached, where the winters are colder. Summer frosts are rare except in the higher altitudes. The rainfall, gemerally peaking, is heary, but the greater portion falls during the atumm and winter. Farther north, and in the higher altitudes, the winters are more severe and the annual precipitation lighter.

On the report on each stream in the Coast division will be found notes on the general climatic conditions, annual precipitation, etc. The records from the meteorologieal stations in the (oast division are wed for this purpose whenever available.

AGRICULTURE

The area of valuable agricultural land in the Coast district is very difficult to estimate on aceount of the very rugged and monntatinous nature of the country. There is, however, a far larger area than one is led to believe on a superfecia! riew of the country, as many of the valleys and benches which appear to be narrow, stony, and worthless, often prove to be of great agricultural value. Only a small portion of the available lands have as yet been taken up owing to the heary cost of clearing and the lack of transportation facilities in many parts. The latter, however, is being gradually overeome with the construction of new railways.

SESSIONAL PAPER No. 25f

The great proportion of the agricultural areas lies in the valleys and lower benches, but the higher altitudes are often found to contain good grazing areas. All the ordinary fruit and field crops do well in the lower altitudes, while the higher areas are used for raising hay, and grazing.

In this district, diversified farming is gradually superseding special farming, as it is found to be more profitable than any special branch of the industry, excent in district-immediately adioming the larere antri- of population.

The rapid growth of the Coast cities has led to the lands in their vicinity to be used almost exclusively for supplying the vegetables, fruits, poultry, and dairy products where an ever-increasing market is found, making this branch of farming a very profitable industry.

Districts, remote from railways and other means of cheap transportation, have been confined more particularly to raising cattle and horses. This is particularly true of Pemberton Meadows and the Lillooet country. In order to winter the stock it is necessary to grow hay and other forage crops, while a certain amount of fruit and vegetables are grown for local use. With the completion of the Pacific Great Eastern railway, this district will probably develop into a mixed-farming country.

IRRIGATION.

Irrigation is necessary in only a small portion of the Coast division, and the apportionment of water for such a purpose is not so great a problem as in come other parts of the province, although the proximity of a large irrigation country afforde domonstration of the advantages of irrigation, and the mome ainous nature of the country allows the method to be readily applied wherever it is desirable.

Along the coast and for many miles inland, the rainfall is so heavy that the farmer requires special means of drainage. However, much of this precipitation falls in the winter, and not during the growing season, hence there is much lese moisture that the figure for the ammal preedpitation would arem tw indicate In the vicinity of Hope, where there is a mean annual rainfall of some 50 inches, irrigation is practised to a certain extent and promotes crops during a dry summer.

Some of the country in the vicinity of Lillooet is included in the Coast division though climatically it is part of the dry belt. Here irrigation is necesary to produce, crops, and the supply of water is rather limited. It is our intention to make a comprehensive study of the various sources that might he used for such a purpose, so that the Provincial Water Rights Branch may be supplied with all stream-flow data necessary for the proper administration of the water resources of that district. The results obtained will also be available for the water users themselves, and should be of considerable assistance in designing engineering works of any magnitude.

Reclamation-Pitt Meadows looking North of Sturgeon Slough showing flooded land to be reclaimed.

RECLAMATION.

Some of the most fertile agricultural land in the province is to be found in the rich alluvial meadows which comprise the delta of the Fraser river. These areas, being low, are subject to floods at certain seasons, and require dyking. There are other places also in the Coast division in which dyking or some form of reclamation is necessary. Wherever the work of this survey is comnected with such projects, every assistance possible is rendered, and when there are streams to be diverted or otherwise controlled, the stream-flow data are particularly valuable.

LUMIBERING.

It is atimated by the Provincial Forestry Branch that in the entire province there are over $100,000,000$ acres of timber land, of which about $65,000,000$ acres poseses a topography and soil which will permit of the production of merchantable timber, which, when tramsortation means become available, can be profitably logged.

The present stand of merchantable timber in the province is estimated romghly at three hundred billion board feet. A conservative estimate places the amount of timber which can be cut ammally without endangering the forests of the province at six and a half billion board feet: the amount of timber cut ammally at present is only about one-fifth of this. Hence, as the demand for humber increases the amual cut will be increased until the maximum economic amount is reached.

During 1912, about 75 per cent of the total amount of timber cut in the province came from the Coast district. The figures show a cut in this part of of the province of some seven hundred and eighty million board fect, composed mainly of fir and cedar, which grow to an immense size in the mild, moist climate of the coast.

Nost of the lumbering is done during the summer months when the weather is mild and there is comparatively little rain, the logs being hauled through the woods by "donkey" engines and heavy steel cables to tide water or to the larger rivers, whence they can be floated to the mills. In some cases logging railroads are being built to reach the timber more distant from the waterways.

A number of the streams in the Coast division are used for running logs but only in the largest can logs be run at all seasons. Even during the heavier freshets, great difficulty is experienced on many of the streams, and in some cases the practice has been abandoned entirely. The great size of the logs makes it rery difficult to run them, and logging railroads are gradually being adopted.

The large amount of territory which is covered by forest growth has a great effect in regulating the rum-off of all the streams in the Coast division, the heary foliage and dense underbrush holding the moisture. At the headwaters of most of the streams, very little timber has been removed, and this, together with the high altitude, tends to keep the winter snows from melting off entirely until well on in the summer. As there are heavy rains in the fall, the period of low water during the summer and fall is very short.

There are large tracts of country in the Coast division which are of greater value for timber than for any other purpose. Nuch of the land is rough, mountainous, and unsuitable for agriculture, while the timber produced is very ratuable.

Pitt Lake from Mouth of Raven Creek

FISHING.

Fishing is one of the largest industries in British Columbia, and is one that must be seriously considered in all power development schemes in order that this important industry shall not, in any way, be damaged.

Until recently commercial fishing was practically confined to the salmon which swarm in myriads up the rivers to the quieter waters in order to spawn. Now, however, the industry has largely developed and many other branches of fishing have been developed. In 1910 the catch of halibut in British C'olumbia was $21,500,000$ pounds out of a total catch for the Dominion of $23,000,000(0$ pounds. It will thus be seen that other branches of fishing are being largely developed.

The preservation of the salmon is almost a vital necessity to the province, and to that end a number of hatcheries have been established on the inland waters. No obstruction should be allowed to remain in any stream to hinder the fish from reaching the epawning grounds. For instance, if any considerable portion of the Fraser river or its tributaries was blocked for a single season so that the fish could not spawn, it would seriously diminish the run of salmon in the Fraser, four years later, and probably have considerable effect also on the run eight years and even twelve years after.

British (columbia is the anglers paradise. Thousands of tourists come heme year after year to indulge in this sport on the inland lakes and streams where. with ideal surroundings, some of the finest fishing of the world is found. Every effort should be made to protect the fish and hemee it is necessary to enfored certain restrictions on the use of the streams.

In every power development which includes any form of dam across the stream in the Coast division, proper provision should be made for the pasage of sabmon and other fish. This is particularly in in the case of the Fraser river.

It is neceesary to preserve the forest cover in order to maintain a regular stream flow. In such cases it would probably be best to reserve the timber. as was done by the Dominion (iovermment in the case of the territory survounding

Coquitlam lake, which provides the water supply for the city of New Westminster and also for the Vancouver Power Company's plant on Burrard inlet; the country surrounding this lake has been made into a reservation, and the land is not open for settlement.

> SEWAGE DISPOSAL.

Special precautions are taken to keep the inland waters pure for the sake of the fish. In construction camps, as well as in more permanent settlements, it is not permissible to run untreated sewage into streams or lakes. Some fairly efficient form of treatment is necessary if it is to be disposed of in such a way. This is altogether apart from more stringent measures which may be necessary when a source of municipal water supply is likely to be effected.

INDUSTRIAL WASTE.

The disposal of sawdust or other industrial wastes in the streams is a great danger, as the fish are apt to mistake such things for food and be seriously injured thereby. Engineers and others establishing camps or factories at the coast would do well to see the regulations regarding the pollution of streams by all such waste materials.

TRANSPORTATION.

The history of British Columbia is composed to a great extent of the development of the transportation facilities of the province, and it will be necessary to continue this development for many years to come. In a mountainous country like this, it is no easy matter to build trails and roads, and the construction of railroads is much more difficult and expensive than in the other provinces, but still good progress has been made in the last few years, and conditions are gradually improving.

The Canadian Pacific railway has, since its construction, been the main line of traffic in British Columbia and for many years it was the only railroad in the province. Now, however, there are a number of other roads in operation or under construction in the Coast division, as well as in other parts. The Canadian Northern Pacific parallels the Canadian Pacifie on the opposite side of the Fraser river. The British Columbia Electric Railway Company has interurban lines connecting Vancouver, Steveston, New Westminster, and Chilliwack. The Kettle Valley ralway and the Vancouver Victoria and Eastern railway are being built up the Coquihalla river. The Pacific Great Eastern railway will connect North Vancouver, Squamish, Lillooet, and Fort George. d few miles of this road is being operated at present, and it is predicted that trains will be running from Squamish to Lillooet by the end of 1914. There are also a number of railways on Vancouver island.

The waterways of the Coast division are of considerable assistance in providing transportation. There are a number of steamships plying between various points along the coast. A couple of small steamers run up the lower Frasel river. Pitt lake and Harrison lake and the rivers which flow out of them san be navigated by motor launches, and provide aceas to streams which camot be reached by any other means.

The mileage of roadways in this part of the province is quite small. There are roads in and around the more important centres, but as a rule they do not extend any great distance. There are roads along both sides of the Fraser river as far as Ruskin on the north side, and Hope on the south, and a number of arossroads have been opened out from both of them. The construction of new roads is necessarily slow, but from year to year new ones are built opening up new districts.
$2.5 \quad 3 \frac{1}{2}$

Forewhere Pitt River.

Forwhore Pitt River.
Wrork has heen progressing for some time on the new lateific highway which it is proposed to extend exentually right acros: British Columbia to the prairies, and to make of it a great automohile highway for tourists traffie as well as providing for local tramsortation. This road is to run from Vancouver,

SESSIONAL PAPER No. 259
through New Westminster and (hilliwack, and follow up) silver arek and across the divide to Princeton. When completed it will give access to the Skagit river.

In the Coast division it has been necessary for us to use practically every means of transportation at some time or other, at times being compelled to travel long distances on foot, sometimes carrying considerable packs. We use the best means of transportation available for our purposes, but circumstances sometimes make it necessary to fall back on some of the more primitive methods.

Transportation conditions in British Columbia have been outlined above mainly with a view to show their influence on the work of the British Columbia Hydrographic Survey. These same conditions, of course, have a great effect on the trade, commerce, and industry of the province and, with the improvement of the shipping facilities by rail and steamboat, the prosperity of the province is bound to increase. Every such development, therefore, is bound to add to the demand for electric power, both for transportation and for manufacturing, and hence increase the value of the water-power sites of the province.

MINING.

There is considerable mining activity in the territory included in the Coast division. The most important product is coal from the mines on Vancouver island. The value of the coal mined in 1912 was nearly five and a half million dollars. One of the most important producers was the Canadian Colliers, Ltd. This firm operates a number of mines in the vicinity of Union bay, and has several small railroad lines to convey the coal to tide-water. Power for these enterprises is now obtained from a hydro-electric plant on Puntledge river.

The Vancouver Portland Cement Co. at Todd inlet, on Vancouver island. which is operated by electric power transmitted from the British ('olumbia Electric Company plant at Goldstream produces about ssoo, 000 worth of cement annually.

The mining industry will probably utilize a larger amount of water-power in the future than it does at present. At one time considerable placer mining was done in the Coast division, and a large number of water records were taken out for this purpose. The placer deposits in this part of the province are not being worked to any extent now, though a few hydraulic mines are in operation in the Cariboo. As transportation and labour conditions improve, however, and better smelting facilities are provided, there will probably be an increase in the number of mines working on low grade ores and on the baser metals. In such mines it is neeresary to handle a bare tomatere cheaply in order to make the properties pay and a good supply of cheap power would be a considerable advantage. The Canadian Colliers serves as an example of the superiority of water-power over steam-power even when a cheap supply of fuel is available. It is to be expected that other companies operating mines of a permanent nature will follow this firm's example.

MANUFACTUURIXG.

British Columbia is not as yet a great manufacturing province, though the value of the industriss are eradually inereating. hat the introduction of herderselectric power and the improved transportation facilities are bound to promote industrial development in the province.

The electrical transmission of power has greatly benefitted certain industries which are carried on in the cities; and many other industries have been developed close to the sources of power so as to escape transmission charges. In the older parts of the country there has been a great increase in the use of water-power within the last decade or two, and great improvements have been made.

WATER-POWER.

In the Coast division there are a large number of good sites for developing water-power in various amounts. Several plants have already been constructed, and a number of other propositions are being investigated by various companies and individuals. The power possibilities, if any, of each stream which has been investigated hy the engineers of this survey are described, and where plants have already been constructed or where it is proposed to construct them, descriptions are also given.

PLANTS ON STREAMS INVESTIGATED WITHIN THE RAILWAY BELI'.

Coquitlam River.

The Vancouver Power Company generates its power mainly at its two plants on Buntzen lake. These plants are situated on the North Arm of Burrard inlet and use the water of the Coquitlam river under a head of 400 feet. There is a storage dam on lake Coquitlam, and the water is conveyed through a tunnel 12,755 feet long to lake Buntzen. This latter lake acts as an equalizing reservoir. and from it the water is led through penstocks to the power-house.

The power generated is used for lighting and industrial purposes in Vancouver. New Westminster, Steveston. (hilliwack, and the lower mainland generally, as well as for operating city and interurban car lines in the same district.

Stave River.

The Western Canada Power Company has a plant on the Stave river at Stave falls. A series of dams near the power-house raises the level of Stave lake, and provides good storage. short steel penstocks carry the water from the dam to the power-house. The head varies from 100 to 120 feet according to the level of the lake.

Gilley Creek.

Gilley Bros., of New Westminster, operate a rock quarry on Pitt lake by means of water-power from Gilley creek. A wooden stave pipe is used to convey the water to two small Pelton wheels which drive the soreening phant and air compresor mechanically. A third wheel is used to drive a small dromamo which supplies current for lighting at night. There is a storage dam on Dumm lake to regulate the flow of the stream. The total available head is about 2,000 feet, but only 600 feet is being used at present.

The flow of this stream was given in the annual report for 1911 and 1912.

DEVELOPED POWER SITES ON STREAMS OUTSIDE RAILWAY BEL'T.

Jordan River.

The Vancouver lsland Power Company has a plant on Jordan river and supplies power to the Vietoria hranch of the Britioh (ohumbia Electric Ralway Company.

Puntledge River.

The Canadian Colliers, Ltd., has a plant on Puntledge river near Union bay on the east coast of Vancouver island, supplying power to a number of mines and operating electric railways connecting the mines with tide-water. This plant is referred to under the heading "Mining" in the "General Report."

Powell River.
There is a water-power plant on the Powell river, which operates a large pulp-mill by direct mechanical drive.

UNDEVELOPED POWER SITES-IN TERRITORY ALREADY COVERED, NOT INCLUDING VANCOUVER ISLAND AND OTHER PARTS OF THE COAST DIVISION.

Bridge River.
A head of 2.000 feet could be developed at Bridge river by driving a tumnel through the ridge separating it from Seton lake. The water would be diverted into the tunnel from Bridge river and conveyed from the other portal by steel penstocks to the power-house situated on Seton lake.

A great amount of power could be developed here, but the cost of the tunnel would render a large initial development necessary. The Pacific Great Eastern railway, which is being constructed along the north side of Seton lake, would provide good transportation but extra precaution would have to be taken to prevent a washout by any leaks or breaks in the tunnel or penstocks. Special provision might have to be made for carrying the extra discharge from Seton lake.

Chehalis River.

The plan of development on this stream includes a storage and intake dam near the lower end of Chehalis lake, and a large concrete pipeline, some 10 miles in length, to an equalizing reservoir near the mouth of the river. The penstocks would lead from the reservoir to the power-house, and would give a head of about 400 feet. Chehalis lake would give splendid storage. It might be possible to divert the flow of the west fork (Statlu creek) into the lake or into the pipeline.

It is not possible to maintain a gauging station near the lake for lack of a gauge reader. The flow given at the station at the mouth must be greatly reduced to aive the flow available.

("hillimack River.

Chilliwack river is quite a large stream, having a fall of about 2,000 feet between Chilliwack lake and the Fraser river.

At one time it was proposed to carry water from Chilliwack lake to Jones lake, but this scheme was abandoned owing to the heavy expense which would be involved, and also as it was found that (hilliwack lake was not at a sufficiently high elevation above Jones lake.

Another proposal is to construct a tumnel from the Cpper ('hilliwack valley to the valley of the Fraser river. This plan is probably quite feasible, but sufficient survers have not been made to develop all its features. On account of the great expense of the tumel, it would be necessary to make a large initial development.

Comihalla River.
About 6 miles from Hope, and just above the month of the Nicolum river, the Coquihalla flows through a narrow gorge from 30 to 70 feet wide. The precipitous rock walls rise to a height of 150 feet. By constructing a dam at this canyon, a head of 100 or 125 feet could be obtained. The power-house could be built opposite the mouth of the Nicolum river, and the water conveyed to it from the dam through a tumel.

Below the mouth of the Nicolum river is another small canyon and falls (Natural Bridge), but it would be rather expensive to utilize this fall with the other.

The gauging station gives the flow of the whole river, including that of the Nicolum, but the waters of this stream could not be used in the upper development.

Green River.

At Nairn falls there is a good site for a development. An intake dam could be built on a rock foundation above the falls and connected by a short penstock with the power-house built below the falls. The Pacific Great Eastern railway is being built along the river bank within a few hundred feet of the falls, and would give good transportation.

The presence of the railway along the east shore of Creen lake will seriously interfere with the use of the lake for storage, and there would be very little pondage at the falls, but it might be possible to store water on the tributaries, soo river or Six-mile creek.

Jones Creek.

The Vancouver Power Company has been investigating Jones creek as a possible source of power. The plan is to drive a tunnel through the ridge between Jones lake and the Fraser valley. The tunnel would be 10,200 feet long. Steel penstocks, 6,000 feet in length, would lead from the portal to the power-house on the bank of the Fraser river.

A dam near the outlet of the lake would provide considerable storage. Boulder creek could easily be diverted into the lake. This plant would utilize the combined flow of Jones and Boulder creeks, and would be fairly well regulated by the storage in Jones lake, under a head of 1,800 feet.

Mesliloet (Indian) River and tributaries.

The Westminster Power Company proposes to develop power from the Mesliloet river and tributaries, and have already made extension survers. Splendid storage facilities are available in Norton, Young, and Ann lakes: from the first named lake a head of 2,000 feet could be developed.

North Lillooet River.

A small amount of power could be developed at a falls on the North Lillooet river. The municipality of Maple Ridge, however, has applied for the right to use part of the water for domestic purposes.

Rainbow Creek.

A series of falls near the mouth of the creck give a head of 630 feet in about half a mile. A small diversion dam could be built at the head of the falls to turn the water into the pipeline. I power-house could be built on the flat at the mouth of the river, a few hundred feet from Pitt lake.

Raven (Rushton) Creek.

This is a small creek flowing into Pitt lake. Rushton lake is Too feet abover Pitt lake and only 4,000 feet distant. Thout 1.000 feet from Pitt lake there is a fall of 100 feet. Mr. E. J. Fader proposes to rum a pipeline from the head of the falls to a power-house to be built near the mouth of the areek. The power is to be used for rumning a rock guarry and graped sereening plant, neither of which have been built as yet.

Silver（＇reek（near Hope）．

It would be quite possible to develop power on Silver creek which flows into the Fraser river，near Hope，though as yet no definite details of any such schema have been worked out．There is a fall of 1,100 feet from Silver lake to the Fraser，but it is pretty evenly distributed over a distance of 5 miles．A long flume line would be necessary to develop any considerable amount of power． Silver lake might be used for storage as long as it did not damage the Pacifie highway which is being built up the creek valley and along the lake．

Silver Creek（tributary Pitt river）．

This stream might be used for developing a small amount of power，but the municipality of Coquitlam is planning to obtain its water supply from it．

Slollicum Creek．

This small stream discharges into an arm of Harrison lake．It has a series of falls near the mouth，with a total drop of 2，000 feet in about half a mile．

South Lillooet River．

Various plans have been proposed at different times for developing power on this stream．They are outlined under the description of the stream in this report．

Probably the simplest method from a physical standpoint would be to drive a tumel from Lillooet lake to stave lake．This would enable the Western（canada Power Company to use the water in their present plant at Stave falls and also in the plant they propose to construct near the mouth of the river．Another plant could be constructed on stave lake below the outlet of the tume to utilize the fall from Lillooet lake to stave lake，some 100 feet．This plan would wive a very efficient means of utilizing the whole fall between Lillooet lake and the Fraser river．

MUNICIPAL WATER SUPPLY．

A number of streams in the Coast division are used for supplying water for various cities and municipalities．Most of these streams are being studied by the British Columbia Hydrographic Survey，and data and information about them are included in this report．For the sake of reference a list is given here：

Vancouver and many of the surrounding municipalities obtain their supply from Capilano and Seymour creeks，and the water is carried across Burrard inlet at the First and Second Narrows，respectively，through submerged pipes．

North Vancouver is supplied from Lynn creek．
New Westminster has a pipeline from lake Coquitlam．＇The Vancouver Power Company，during the construction of the dam at the outlet of the lake， built a splendid intake tower and tunnel for the city．

The municipality of Coquitlam is preparing to install a system to draw water from Silver creek which flows into Pitt river from the north near Pitt lake．

The municipality of Maple Ridge has applied for water rights and a reser－ vation of the watershed on the North Lillooet river．

In addition to the places mentioned above，Victoria and a number of other places on Vancouver island have installed water supply systems．It is our intention to continue this work of investigation of water supplies during 1914， with the extension of the work of the survey to include the island．

Where a stream or lake is used to provide a municipal water supply it is often advisable to reserve the entire water basin from settlement，as was done at Coquitlam lake for the New Westminster water supply．In this country
the upper drainage basins are at such high altitudes, and the land is of such mountainous and rocky nature, a reservation does not as a rule interfere with agricultural development, but keeps the water pure and uncontaminated and preserves the natural regimen of the stream.

CONCLUSION

The foregoing outline of conditions in the Coast division should serve to show how intimately the streams are connected with the life of the province. The prosperity of the country is dependent to a great extent on the flow of the streams, and for many purposes it is necessary that the amount of this flow should be known quite accurately. The flow of each stream varies from day to day, so that continuous records are generally required.

Records of the flow of the more important streams in the Coast division are submitted herewith. It has been the aim to make these results as complete and accurate as possible under the circumstances. In locating the gauging stations, the purpose for which the returns would be used in each case has been kept steadily in mind. It is hoped, therefore, that the results obtained will not be of merely academic interest, but will be of great practical importanc in the development of this part of the province. The inquiries which are beginning to come to the office would indicate that such is the case.

REPORT

BRITISH COLUMBIA HYDROGRAPHIC SURVEY FOR 1913

CHAPTER 3
Kamloops Division

REPORT OF E. MI. DANN, D.IA
Divisional Engineer

CHAPTER III.

KAMLOOPS DIVISION.

The Kamloops Division is comprised of:-
(1) The Thompson river and all its tributaries.
(2) The Okanagan river and all its tributaries which lie north of the international boundary.
(3) The Fraser river at Lytton, and tributaries of the Fraser between and including Stein creek and the Nahatlatch river.
(4.) That portion of the Skagit river and its tributaries lying within the province of British Columbia.

AREA OF THE KAMLOOPS DIVISIOÑ.

The area of the Thompson river catchment basin is some 22,000 square miles.

The area of the Okanagan river catchment basin lying north of the fortyninth parallel of latitude is about 6,000 square miles.

The area of that portion of the Fraser river drainage which lies within the Kamloops division is about 1,000 square miles.

The area of that portion of the Skagit river which lies north of the fortyninth parallel is about 400 square miles.

It will readily be seen that this division which comprises roughly an area of 29,000 square miles can be most advantageously directed from Kamloops, where the divisional office is at present located. The division includes the provincial water districts Nos. 2, 3 and 4.

(LIMATE

The Kamloops division has been outlined arbitrarily by drainage areas. It might almost as logically have been bounded by a 30 -inch precipitation contour. With the exception of the upper reaches of the North Thompson, at no point within the Kamloops division does the mean precipitation exceed this amount, and the settled districts lying outside its boundaries where the precipitation is less may readily be enumerated. Speaking in general terms, the Kamloops division covers that portion of British Columbia popularly known as the "dry belt," in which irrigation is practised.

Within this section of country, precipitation varies from a minimum of 5 inches per annum in the vicinity of Asheroft to a probable maximum of 35 inches near Tête Jaune Cache.

The mean annual precipitation and maximum and minimum temperatures (including snowfall 10 inches- 1 inch rain) of several important centres in the district is appended.

It may be added that the periods of severe cold are almost always of very short duration, while intense heat is usually felt only after a time of prolonged drought. Within the dry belt, the exceptionally fine weather of the spring and autumn, and the long duration of these seasons, is remarkable.

NATURAL RESOURCES.

MNIN(i.

Mining, except in the older section of the division, is still in its infancy. The principal mine, the largest of its kind in British Columbia, is the Nickel Plate Mine operated hy the Hedley (iold Mining ('ompany, at Hedley, B.C.: in the past year it yielded 38,000 ounces of gold, from which $\$ 360,000$ was paid in dividends. A large stamp mill, a concentrator, a tramway, and other various sesentials of this large organization are operated at present by hydro-electric power from Twenty-mile creek. As no material facilities for storage have been obtained, it has been necessary to operate an auxiliary steam plant during the winter months. A dam across the similkameen river at Hedley is now under construction, and a larger hydro-electric plant is proposed hy which the output of the mine may be increased 50 per cent. A head of 67 feet is obtainable in 3 miles, water being convered from the headgate to the penstocks in open flumes. It is thought that 1,500 horse-power to 1,700 horse-power may be obtained. The need of records of the flow of the similkameen river has been felt be the designing engineers.

The coal mines of the Nicola valley come next in importance. These put on the market a variety of bituminous coal known as " Nicola," a good steam fuel, fommely largely used by the ('anadian Pacific Ratway. The substitution of oil-burning locomotives on certain divisions of the railway has tended to decerese the market for productso of the mines. During 19912 the total output of this section was some 230,000 tons.

In the vicinity of Princeton and Tulameen, in the Similkameen valley, coal mines are in operation of which output during 1911 was about 25,000 tons (largely lignite).

Near Kamloops the "Iron Mask Mine," a low-grade copper mine, is in operation, the ore being shipped to a United States smelter.

Several placer gold mines have recently been discovered on Louis and Boulder areeks, north of Kimmoops. The production at present is very small, hut it is possible that these placer deposits will prove a valuable source of gold, and increase substantially the ammal output of the precious metal in British Columbia.

SESSIONAL PAPER No. 25 f

Platinum has been procured in very limited quantities from gold-bearing gravels of the Tulameen river.

Cinnabar (mercury ore) has been discovered in the Kamloops district near Savona.

Gypsum exists in some quantity in the vicinity of Crand Prairie, near Kamloops, and an impure form of this mineral, known as "gypsite," is found near Merrite.

While the lumber industry is not as important in the Kamloops division as in the more humid sections to the east and west, still lumber companies are in many cases important water users. The Forest Mills, Ltd., have developed water-power of small capacity on Crazy creek at Taft, B.C. (see Water Power Developments).

The Adams River Lumber Company has a control dam on the Adams river, near (Chase, B.C'.. and their rights on this stream may complicate hrodro-electrie development here. This company also uses water for sluing from Bear creek. a tributary of Adams river.

The Arrow Lake Lumber Company diverts the water of Celeste creek, a feeder to Seymour Arm of Shuswap lakes, for sluicing purposes.

The Nicola Valley Pine Lumber Company has constructed a dam of rockfilled timber in Spius creek, which affords impound of about 25 acres.

AGRICULTURAL LAND AND IRRIGATION゙。

It has been estimated that there are at present some 100,000 aceres of irrigable land in Kamloops. similkameen, Okanagan, Nicola, and shuswap districte.

While these figures are nothing more than an approximation, it is thought that they are conservative. There are a few sections where dry faming and the scientifie rotation of erops is practised, and a few, where the rainfall is adequate. simple farming is carried on: hat in the main, irrigation is essential for ene eesernl

Upper_Columbia, Valley:Bottom Lands near Wilmer 13.C'
farming, and year by year the old-fashioned methods are being superseded by the product of modern ideas. Where formerly the open gravel ditches or flumes of rough timber were seen paring their toll for inefficiency through leakage, seepage, and evaporation, one now sees the concrete lined and covered-in canals and the carefully constructed metal flumes. This applies at present, of course, only to the larger land companies whose initial capital has permitted the more expensive and efficient construction to be undertaken, but even the small farmer is paying more attention to this subject than heretofore.

Upper Columbia Valley Bottom Lands, near Wilmer, B.C.
Irrigation is at present carried on almost entirely by gravity methods, but the pamping of water from the larger rivers to the hottom and hench lands will open up a large field for future development.

I sicomific study of pumping, including efficiency of various types of pumps, prime movers, and fuels is very advisable at the present time, as it will be the means of preventing eostly mistakes on the part of those ranchers progressive mongh to adopt this method of reclaming arid land. As this question might well be considered in the jurisdiction of the British Columbia Iydrographic survery it is reommended that steps the taken in this comection during the coming season.

Fruit growing is the predominant pursuit in the ()kangan and portions of the similkameen valleys, while mixed faming is carried on in the Kamloops. Nicola, and shuswap sections. Stock raising is gone in for to a great extent, particularly in the vicinity of Kimboops, Asheroft, and Merritt, where the ranges are eminently suited to this industry. Alfalfa is grown extensively in these sections for winter feeding.

The names of some of the larger irrigation companies in the Kamloops division which have constructed extensive irrigation works are appended: White River Valley Power (${ }^{\circ}$. (Vernon), British ('olumbia Fruitlands (Kamloops), British Columbia Horticultural Estates (Walhachin). Barnes Estates (Walhachin), summerland Development (O. (Summerland), Southern Okanagan Land ('o. (Pentioton), Belgo ('anadian Land (o. (Kelowna), south Okanagan Land and Orchard Co. (Kelowna), Kelowna Irrigation Co. (Kelowna).

MUNICIPAL W゙ATER ぶPPLY．

The question of municipal water supply，which is a momentous problem in the more thickly populated districts of the world．while not ret so urgent or important in British Columbia owing to the physical features of this provinee． still it is a matter which，for the sake of the future，must receive intelligent thought．

Kamloops，the largest town in the dry belt，gets its water supply from the South Thompson river；Vernon，Kelowna，Salmon Arm，and Penticton，from adjacent mountain streams；Ashcroft from the Bonaparte river．

Sewage disposal is imatter which is intimately related to the question of water supply，especially in towns situated on the larger rivers．It is now con－ sidered an axion that no practical method of sewage purification will entirely eliminate disease－producing germs，although modern methods will materially reduce them．Any city which derives its water supply from a river or stream into which other eities or communities diseharge their sewage．Whether treated or raw，will generally find it necesary to purify the stream＇s water hefore it may be safely used for domestic purposes．

While a study of velocity and discharge is necessary on streams from which a water supply is derived，and which act as a medium for the disposial of sewage， it is on the smaller streams that hydrographic work is of most importance． since conditions do not always permit of the impounding of surplus run－off in reservoirs，the minimum discharge of any stream which is a source of water supply is of particular interest．An average city or town consumes 100 gallons of water per day per capita．This is considered to be a liberal estimate and is arrived at by taking the mean of various quantities used in mumbers of cities and towns throughout the states C＇nited and C＇anada，in which countries，by the way，the wanton waste of water is notorious．（Johnston－－＂Purification of Public Water Supplies＂．）

WATER－POWER DEVELOPMIENTS．

CITY OF KAMLOOPS PLANT ON BARRIERE RIVER．

The principal hydro－electric development in the Kamloops division is the city of Kamloops municipal plant of the Barrière river，for which Messrs． Ducans and Dutcher，of Vancouser，are designing and construting engineers． Since 1911，records of flow have been obtained showing a maximum of 3,300 second－feet，and a low－water flow of 150 second－feet．

The plant will operate under a head of 196 feet，water being carricd by 17．（1）0 feet of flume line to the penstorks．（iond storage facilities are afforded． and no serious interference from frazil or anchor ice is anticipated．

The initial capacity of the plant will be 1600 to 2000 horse－power and provi－ sion is being made for its ultimate extension to 10,000 horse－power．The cost of the initial umbertaking is extimated at 2237.800 ．The ultimate development
 at 2200 volts 3 phase， 60 cycles，being stepped up to 44,000 volts for trans－ mission．Step－down transformers，switchboard，ete．，will be located at the auxiliary steam plant power－house at Kamloops．

Two 1200－horsepower Francis type turbines are to be used for the initial development，each designed for direct connection．The flume line is of timber
 for the ultimate development．The forebay and power－house are of concrete construction．15－foot timber dam of rock－filled cribbing is designed for the flume＇s intake．

OTHER SMALL DEVELOPMENTS.

The town of Spence's Bridge receives light and power from Murray creek. where a small development of 100 horse-power has been made. A Pelton wheel operating under a 220 -foot head is used, 16 -inch rivetted steel pipe conveying water to the wheel, the upper 175 feet of pipe being laid in rock tunnel.

Forest Mills, Limited, of Taft, B.C., has a Pelton wheel development of 160 horse-power operating under a head of 175 feet. Power is used for the saw-mill and for lighting the town of Taft.

The development of the Hedley Gold Mining Company on Twenty-mile creek in the Similkameen valley, is a Pelton wheel development, the power being used for operating the company's forty-stamp mill and concentrator, as well as for electric tramway and cable cars.

A small hydro-electric plant on the Bonaparte river, from which power has been used for the town of Asheroft, is at present out of commision owing to the failure of the dam during the freshet of 1913. It is understood that the dam may not be replaced, in which case the town will continue to derive its power from its auxiliary steam plant.

FUTURE DEVELOPMENTS.

The Coteau Power Co., controlled by Mackenzie and Mann interests, propose an extensive development at Coteau Falls on the shuswap river near Lumby, B.C. Nine thousand horse-power will be the caparity of the plant which; if constructed, may be used for the electrification of the Okanagan branch of the C.N.R.

The Hedley Cold Mining Company propose a development of 1500 horsepower on the Similkameen river at Hedley (see "Mining"). Construction will probably be carried on during 1914.

Myrtle River-Helmeken Falls clear drop of 450 fect.

SESSIONAL PAPER No. $25 f$

The most important undeveloped sources of power in this district are: The Adams river near ('hase. where a head of 200 feet in 6 miles, with a probable mean discharge of 1200 second-feet could be obtained. Adams lake forms an excellent storage basin, and no very important interests would be affected by damming its outlet.

The Clearwater river has falls of considerable size, while on its main tributary, Myrtle creek, there is one sheer fall of 450 feet. Excellent storage is also said to be available. As yet no accurate data in regard to these powers are available, but it is our intention to begin the collection of information on these important streams during the coming season.

The Seymour river and Celeste creek in the Shuswap Lake drainage area, are important sources of water-power, while many smaller mountains stream will no doubt soon be utilized to supply the needs of progressive communities.

*huswap River-Cuteau Hydro-Electric Company's Development Dam Site.

REPORT

() F

BRITISH COLUMBIA HYDROGRAPHIC SURVEY FOR 1913

CHAPTER 4
Kootenay-boundary Division
REPORT感OF C. E. RICHARDSON, A.M. (AN. SOC. (A . F。
Divisional Engineer

CHAPTER IV.

KOOTENAY BOUNDARY DIVISION.

GENERAL。

Kootenay Boundary division is that part of British Columbia known as East and West Kootenay districts and that part of Yale district which is dramed by Kettle river (generally known as the Boundary district) or it might be described as comprising the whole dranage area of the columbia river exept the Okanagan river basin. The East and West Kootenays are divided by the Selkirk range, and these are encompassed on the north, south, east, and west by Columbia river and its tributary, the Kootenay.

The Columbia rises in Columbia and Windermere lakes, 90 miles south of the C.P.R. main line at Golden, and flows in a northwesterly direction for about 200 miles at the Big Bend, at which point it turns and runs southerly for about 250 miles, past Revelstoke, through Arrow Lakes, arossing the international boundary line at Waneta, B.C.

The Kootenay river rises in Beaverfoot range of the Rocky mountains about 20 miles south of the C.P.R. main line at Palliser, B.C., and flows for 175 miles in a southerly direction, pasing within 1 mile of Columbia lake, and crossing the international boundary line at Cateway, B. ('. It flows through Montana, into Idaho, re-entering British ('olumbia 60 miles west of (iateway and 20 miles south of Kootenay Landing, at which point it loses itself in Kootenay lake. From Kootenay lake, the river flows in a southwesterly direction, discharging into Columbia river at Castlegar, about 20 miles north of the international boundary line.

AREA AND DRAINAGES.

The totalarea of Kootenay Boundary division is approximately 32,000 - cquate miles. Of this, some 15,000 square miles are drained by the Columbia above the mouth of Kootenay river. The Kootenay drains approximately 13,000 square miles in British Columbia. The boundary district comprises an area of about 3,000 square miles, drained by Kettle river. The remaining 1,000 square miles are drained by Pend d'Oreille river, of which Flathead creek is a tributary; Pend d'Oreille river discharges into the Columbia at Waneta, 200 yards north of the international boundary line.

CLIMATIC CONDITIONS.

A great variation in climatic conditions exists in the different sections of the Kootenay Boundary division. In part of southeast Kootenaty and the Boundary the total precipitation is small, varying from 10 to 18 inches, and is similar to other semi-arid districts in British Columbia, where the summers are hot and dry, and the winters severe ($-40^{\circ} \mathrm{F}$.) with only a light snowfall.

In southwest Kootenay the summers are hot but the rainfall fairly heavy, aterage for May to september, $1908-12$, bemg sighty over 10 inches at Nemon. During the winters the thermometer seldom goes below zero, and the larger rivers never freeze over. The precipitation is heavy, the snowfall in certain districts beine about of feet. In the morth half of both Last and West kootentys the summers are hot and the rainfall is fairly heavy (about the same as Nelson). The winters are severe $\left(-50^{\circ} \mathrm{F}\right.$.) with heavy snowfall. At Glacier, on the C.P.R. main line, the snowfall varies from 40 to 50 feet each season.

RUN-OFF.

It would be a difficult matter to obtain a reliable factor to relate the run-off in surface waters with the precipitation, for it would necessitate a study for a series of consecutive years. All the larger and more important streams are glacial fed. Extreme high water in the summer is obtained in all probability through a combination of heary sowfall during the preceding winter, with a series of hot days and nights in May and June and possibly July and August; warm rains also greatly increase the flow. At the same time it appears possible that very high water may be obtained by a series of hot days and nights when the precipitation has, apparently, not been very heavy during the preceding winter; this is particularly noticeable in the smaller drainages.

A more or less interesting comparison relating to the run-off on the east and west slopes of the Selkirks and the west slope of the Rockies in the vicinity of Revelstoke and Golden during the months May to September, 1913, is made herein. The streams considered are as follows:-
(1) West slope of the Selkirks-Illecillewaet, Akolkolex, and Incomappleux rivers.
(2) East slope of the Selkirks-Beaver and Spillimacheen rivers.
(3) East slope of the Rockies-Blaeberry and Kicking Horse rivers.

Lumality	Drainage :1re: ip Square Miles.	Run-off Depth in inches.
1. West slope of the Selkirks.	1,045	62
2. East " "	980	39
3. West " " Rockies.	1,025	26

Probably 80 per cent of the run-off of the above-mentioned drainages is included in the months May to September. With the exception of Akolkolex river the streams are all about the same length-30 to 40 miles. The streams in localities (1) and (2) have their source in the same vicinity, i.e., Glacier National park. The streams on the west slopes of the selkirks and Rockies (1) and (3) all flow in as southwesterly direction, while the spillimatereen flows southeast and the Beaver northeast. "The drainage areas of each individual stream (taken from Railway Belt maps) are not, perhaps, very accurate, but by taking the streams in groups the error is diminished. The figures above should show, within 15 per cent, the relative run-off on the three slopes in the localities above mentioned.

The work in the southern part of the division has just been started, and only investigations on the most important streams have been carried on. Comparisons of the Columbia river above the mouth of the Kootenay river, and the Kootenay river at the mouth and Pend d'Oreille river are as follows:-

stream.	Drainage Area. in square miles	Rum-rfif dapth in inches. June io 1)ecember, 1913.
of the Kootenay	$\begin{aligned} & 15,000 \\ & 19,000 \\ & 26,600 \end{aligned}$	$\begin{aligned} & 36 \cdot 1 \\ & \because \because \cdot 1 \\ & \because \because \quad \end{aligned}$

Columbia, above the mouth of	15,000	$36 \cdot 1$
	19.000	$\cdots 1$
Pend d'Oreille at mouth	26,600	12 i

The drainage of the Columbia river above the mouth of the Kootenay includes all the northern part of East and West Kootenays. The drainage of

SESSIONAL PAPER No． $25 f$
Kootenay river includes the southern part of East and West Kootenays and a portion of northern Idaho and Montana．The drainage of the Pend d＇Oreille includes areas in northeast Washington，southwest British Columbia，northern Idaho and northwestern Montana．

The above table shows in a marked manner the increase in run－off from the southern to the northern end of the division．

UTILIZATION OF W゙ATER．

In dealing with the utilization of water the following divisions may be made：

Mining．
Timber．
Irrigation．
Domestic and Municipal．
Hydro－electric Development．

MININ（i。
The following table shows the production of metals，coal，and coke in the Kootenay Boundary district of British Columbia for the year 1913：－

	＇Tons．	Value．
		\checkmark
Consolidated M．\＆゙心．（0）	（3．）\because ：	6，846， 309
Granby M．S．\＆I＇．（＇o．．．		4，486，830
British Columbia Copper（o）	1022.442	1，887，394
Hedley Gold mines．	70，727	792，3：30
（）ther stamp mills．	53,488	548，199
Zinc shipments．．．．．．．．．．．．．	！ 1017	494．45\％
Tonnage other ores milled，not included in abore．	240.300	
Total metalliferous．	2．573，350	15． 11.5 .5 .811
	73，250	829，938
＇Fotal British Columbie metalliferous．	$2,500,100$	14，125，576
Ifess miscellancous British（ $o l u m b i a ~ o r e s ~$	－$\because, 5$	41，367
Kootenay and Boundary，metalliferous．．．．	$2,499,265$	14，054，209
Total coal sold	1，581，449	4，8．42，028
Total coal uscd for coke．	492，902	1，713，178
＇Total value metalliferous eoral and cooke	$4,530,616$	$20,0339,415$

Cohe produced： 319,325 short tons at 55.366^{1} per ton．
In the above figures December is estimated in all eases．
In the operation of practically all mines the use of water is essential．The importance of water－power developments in comection with the operation of mines is shown in the table below．Between twenty and thirty small nowers ranging from 50 to 750 horse－power are here shown，but it is regretted that this list is not complete；probably from six to ten more developments should be added． Aside from these small developments the majority of ore is mined by power procured from the West Kootenay Jight and Power Company．After the ore is mined and shipped to the smelters，water and water－power again become an important factor；the three smelters in the Kootenay Boundary division using about 10,000 horse－power．The production in tons in the following list was
obtained through the courtesy of the Nelson Daily Veu's. The accuracy of the horse-power developed is not guaranteed, there being a great variation in most cases, according to the season and the amount of power required.

Mine.	Locality.	1913. Production.	Horse Power.	Remarks.
East Kootenay.				
Sullivan.	Kimberly....	35,925	350	Power from Mark creek, Sil-ver-lead mine.
Monarch.	Field	196	100	Power from Cathedral creek, Silver-lead mine.
Miscellaneous		1,782		
Total.		37,683		
Boundary District.				
Granby Co.	Phoenix	1,242,053		All mines are copper mines unless otherwise designated. Power is supplied to the Granby mines at Phoenix by the West Kootenay Power \& Light Co.
Motherlode.	Deadwood.	303,996		Power is supplied by the West Kootenay Power \& Light Co.
Rawhide.	Phornix.	235, 455		Power is supplied by the West Kootenay Power \& Light Co.
Miscellaneous.		14,472		
		1,798,976		
West Kootenay. Slocan District. ${ }^{1}$				Except where otherwise mentioned, the ore production in West Kootenay is silverlead.
Standard.	Silverton.	14,967	650	Power from Four-mile creek.
Van Roi.	*	627	540	Power from Granite creek.
Hewitt.	.	231	325	Power from Four-mile creek.
Idaho-Alamo.	Three Forks.	276		Power from Carpenter creek, now in disuse.
Ruth	Sandon.	471	150	Power from south fork of Carpenter creck.
Slocan Star...	.	562	75	Power from Sandon and White creeks, tributaries to south fork of Carpenter creek.
Noble Five	"	53	300	Power from south fork of Carpenter creck.
Wonderful.	.	50	140	Power from Tributary and Miller creeks, tributaries to south fork of Carpenter creek
I vanher	" ${ }^{\text {- }}$	83	235	Power from south fork of Carpenter creck.
Monitor-Ajax	Roseberry.		150	Power from east fork of Wilson creek.
Payne........	Sandon.		300	Powerfrom Payne and Reciprocity creeks.
Enterprise....	Slocan....		150	Power from Ten-mile creck.
Last Chance..	Sandon....		50	\|Power from Last Chance Slide creek.
Miscellaneous........		6,105		
Total.		23,379		

${ }^{1}$ Power used in Slocan District obtained through courtesy of W. J. E. Biker, District Engineer, Water Rights Branch, Nelson, B.C.

Smelters.	Locality.	1913. Tons Treated.	HorsePower.	Remarks.
Consolidated	Trail	335,323	3,000	West Kootenay Light \& Power ($\%$.
Granby	Grand Forks .	1,242,053	3,500	West Kootenay Light \& Power Co.
			700	Development immediately above Smelter on north fork of Kettle river.
13. C. Copper.	Gireenwood.	622,442	2.000	West Kootenay Light \& Power Co.

TIMBER.

Among the great industries of Kootenay and Boundary districts is the lumber manufacturing business, the timber being loged from the great tracts of timber which eover the mountains of the vicinity. Tany millions of dollars are invested in the timber limits and mills, and the amount of money expended ammally in labour and supplies reaches a huge figure. In the mountain district of British ('olumbia there are in the neighbourhood of one hundred mills of various sizes, and the majority of these are in southeastern British Columbia.

The lumber industry in this district has been largely dependent upon the demand from the prairies, but this year some of the mills of the interior of the province claim that they will find a market in the Enited States, on acount of the reduction in the duty which became effective with the passage of the new Tariff Bill. During 1913 market conditions in the Prairie Provinces were not particularly good, yet in spite of this fact it is estimated from the official figures of the amount shipped out that the value of the lumber exeeded 58,000 . 000. Low stocks in prairie lumber yards at the present time, together with last seacon's good crops, are pointed to as indicating amproyed market during the coming year.

Lumber companies, which are scattered throughout the whole division, use the mumerous streams for log-driving during the freshet in May: June. July, and August. In Boundary district on Kettle river the drive in 1913 amounted to $20,000,000$ feet.

IRRIGATION LANDS.
The scarcity of agricultural lands and the richness of the soil necessitates the utilization of all available lands in an attempt to fulfil the demands of the local markets. With the exeeption of small plots here and there the valleys of (olombia, Kootenas, and Kettle rivers afford the only location of agreultural lands. The two most important and largest farming localities are "Windermere(rambrook" and (iramd Forke districts. In the first case, large henches along Cohmbia amd Kootemay rivers hate attracted many sotlers and large compathies are now developing 10.000 to 20.000)-acere tracts which would he of little value to the individual farmer on aterount of the prohbitive eost of installing an irrigation system. Grand Forks district is well known for its orchards, and the land generally brings a high price per acre. In the vicinity of Nelson and along Lower Arrow lake, large tracts of land have recently been cleared, and appearances temd to show that both fruit growing and mixel famine mat be successfully carried on in these localities.

Irrigation is required in both Grand Forks and Windermere-Cranbrook distriets. In the latter distriet the gravity syotem only is in use. The colmmbia Valley Orehards are installing an extensioe irtigation sotem, induling abour

SESSIONAL PAPER No. $25 f$
20 miles of flume, and are obtaining water from the Vermilion river and sinclair creek. The Columbia Valley Irrigated Fruit Lands Company at Invermere are also installing a large system by which they obtain water from Dutch, Toby, and Horsethief creeks. These two companies expect to irrigate about 100,000 acres of land. In Grand Forks district, pumping from Kettle river is used extensively. Power is supplied chiefly by the West Kootenay Light \& Power Company. Very little irrigation is required in any other part of this division.

DOMESTIC AND MUNVCIPAI.

The numerous small streams; particularly in East and West Kootenays, make it a simple matter for the settler to have his own pipeline and water supply. In the same way only a few villages should have difficulty in obtaining a suitable supply. It is hoped that this survey will be able to publish information which will assist in the installation of adequate water systems where such have not already been installed.

The following towns are lighted by hydro-electrice developments: Revelstoke, Glacier, Nelson, Trail, Rossland, Grand Forks, Phoenix, Greenwood, Eholt, New Denver, Silverton, and Kaslo.

The "Utilization of Water" has already been discussed under the four headings referring to "Mining," "Timber," "Irrigation," and "Municipal and Domestic," and in three of these headings hydro-electric developments have been mentioned. Practically every water plant for mining purposes is used to some degree as a hydro-electric development. Pumping by hydroelectric power for irrigation purposes is used in Grand Forks district, and some ten towns in this division are lighted by hydro-electric developments.

By far the most important development is that of the West Kootenay Light and Power Company, situated at Upper Bonnington falls on Kootenay river, 11 miles from Nelson. This plant is operating under a $6 \pm$-foot head. Two 8,000-horse-power units are in operation, and a third unit of 10,000 horsepower is now being installed. The capacity of the plant is 36,000 horse-power and it was designed to use 3 -runner turbines. Power is supplied to mines in Nelson, Rossland, and Boundary districts, to the smelters at Trail, Crand Forks and Greenwood, to light the towns of Rossland, Trail, Eholt, Crand Forks, and Phoenix, and for pumping for irrigation purposes in Grand Fork: district.

The West Kootenay Power and Light Company has two auxiliary plants, one at Lower Bonnington falls on Kootenay river, 12 miles from Nelson, and one on Kettle river at Cascade.

The plant at Lower Bonnington falls has a capacity of 4,000 horse-power, and operates under a head of about 40 feet.

At Cascade the plant is operated under a head of 155 feet, and the development exceeds j,000 horse-power.

The City of Nelson Light and Power plant is situated at Upper Bomnington falls on the opposite shore to the West Kootenay Light and Power Company's plant. It is operated under a 60 -foot head, and at present generates 1,250 k.w., the power is used to light the city of Nelson, to operate the city street railway, for manufacturing purposes in Nelson, and to operate one or two mines in the vicinty of Nelson.

On the north fork of Kettle river the Gramby Mining, Smelting and Power Company have a small development. This plant is operated under a head of 30 feet, and supplies light and a small portion of the power used in the smolter: 700 horse-power is generated.

Illecillewaet River-Revelstoke Light and lower Company's Dam.

SESSIONAL PAPER No. $25 f$
Greenwood City Power and Light plant is located at Boundary falls on Boundary creek. The plant is operated under a head of 130 feet, and supplies light to the city of Greenwood. Capacity 250 horse-power.

The City of Revelstoke Power and Light plant is located on Illecillewaet river about 2 miles from Revelstoke. A concrete dam has been built, and water is carried to the power-house, some 200 yards below, through a 6 -foot stave pipe. The present plant is in duplicate on a $450 \mathrm{k} . \mathrm{w}$. capacity basis.

The C.P.R. have a small installation on the Illecillewact near Glacier the power generated being used for lighting their hotel at that point from May to October. The plant is operated under a head of 60 feet and about 100 horsepower. (12-hour power) is obtained. A concrete dam 15 feet high and 100 feet long affords a small storage, and to increase the flow in the early morning water is diverted from Asulkan brook.

New Denver, Silverton, and Kaslo have small developments for lighting purposes on Carpenter creek, Four-mile creek, and Kaslo river, respectively.

As the country progresses the demand for power increases, and it is expected that during the coming year several more plants of from 5,000 to 10,000 horsepower will be installed in this division.

HYIDROGRAPHIC DATA.

GENERAL CHARACTERISTICS, 1913.
Throughout Kootenay-Boundary division in 1913 very high water existed. The snowfall during the winter 1912-13 was heavy, and for the first two weeks in June the days and nights were hot throughout practically the entire division. Columbia river below Arow lake became ahomomatly high and great damage was threatened; however, on the 15th of June cool weather set in throughout the Kootenay drainage area and continued for a sufficient length of time to check extreme high water. Nevertheless, two washouts occurred on the Great Northern between Waneta and Marcus along the Columbia. The Kootenay at Nelson registered about 8 feet higher than in 1912, and the water was up to the base of the C.P.R. rail at a point between Nelson and Cranite. The streams in the northern half of East and West Kootenays aggregated a flow 20 per cent greater than the 1912 discharges.

$$
\text { résumé of proposed work for } 1914 .
$$

Up to the present there has not been sufficient money available to investigate ice conditions, for which reason very little information is available as to minimum flow and winter discharges on the streams in East Kootenay, the northern part of West Kootenay, and the Boundary. It is proposed during the winter of 191415 to thoroughly investigate the behaviour of those streams on which there are power possibilities. Among those streams will be: Columbia at Revelstoke, Donald and Golden, Kicking Horse, Blaeberry, 'Toby, Horsethief, No. 2 Bugaboo, Spillimacheen, Beaver, Illecillewact, Jordon, Akolkolex, Incomappleux, Kettle, Elk, Bull, and St. Marys. It is hoped that by May, 1914, to have stations established and to have systematic gaugings on sixty of the most important streams in Kootenay-Boundary division.

REPORT

BRITISH COLUMBIA HYDROGRAPHIC SURVEY FOR 1913

CHAPTER 5
Coast Division-Hydrographic_Data

CHAPTER V.

COAST DIVISION-HYDROGRAPHIC DATA.

REGULAR METERING STATION.

BELKNAP CREEK AT BELKNAP LAKE.

Location-Section 36, township 6, range 7, west of the 7th meridian.
Records Available-Continuous records since October 21, 1912.
Winter Conditions- Tery heavy snowfall but practically no ice on the stream. Open water conditions all year.

Gauges-Staff gauge near outlet of lake-readings irregular, one or two per week.

Channel-Bed of stream strewn with rocks and boulders, giving uneven bottom but good control.

Discharge Measurements-One measurement in 1912 and six in 1913, well distributed- measurements made from cable carrier.

Accuracy-Good meter measurements, but gauge readings not regular, one or two per week.

BELKN゙AP CREEK.
Belknap creek rises at the foot of mount Ida, at an eleration of some 3000 feet. and discharges into Hixon ereek helow Belknap lake at ant teration of about 1500 feet. It is part of Burrard Inlet drainage. It would be very difficult to attempt to estimate the drainage area of the stream from the data at present available.

The precipitation in the Belknap creek watershed is probably between 120 and 150 inches per annum. There is very heavy snowfall in the winter, but the weather is not cold, and very little ice forms on the streams.

There are two important lakes on the creek; Ann lake, at an elevation of 2200 feet, has an area of 83 acres; Belknap lake, at an elevation of 1800 fcet, has an area of 15 acres.

The Westminster Power Company proposes to include Belknap creek in the high head development. The latest proposal is to divert water from some point between Ann and Belknap lakes, and carry it by means of a short flume and pipeline into Norton lake, which is to be used as the main equalizing reservoir.

There are two gauging stations on Belknap creek. Up to the present the station at the lower end of Belknap lake is the one which has been most used. In 1913, however, a second station was established below Ann lake near the proposed site for the diversion to Norton lake. Neter measurements have been taken at this station, but no regular gauge readings.

Discharge Measurements of Belknap Creek at Belknap Lake, 1912-13.

5 GEORGE V., A. 1915
Monthly Discharge of Belknap Creek at Belknap Lake for 1913.

Month.	Discharge in Second-Feet.			$\frac{\text { RUN-off. }}{\frac{\text { Total }}{\text { in }}$ acre-feet. $.}$
	Maximum.	Minimum.	Mean.	
January...	s	8	S	491
February.	33	8	14	777
March..	11	9	11	676
April.	65	9	38	2,260
May..	202	25	82	5,040
June...	255	155	174	10,400
July	192	93	137	8,420
August	87	33	54	3,320
September	93	25	54	3,210
October	409	15	81	4,980
November	61	25	40	2,380
December.	41	21	33	2,030
The year.	409	8	$60 \cdot 5$	43,984

Note.-Accuracy "B" and "C".

Monthly Discharge of Belknap Creek below Belknap Lake for 1912.

	Month.	Discharge in Second-Feet.			Run-off.
		Masimum.	Minimum.	Nean.	Total in acre-feet.
November.		65	15	- 40	2,860
December		27	s	14	S60

[^1]SESSIONAL PAPER No. $25 f$
Dally Gafge Heights and Disuharges, Bolknap ('reek below Belknap for 1912.

Daily Gauge Heights and Discharges of Belknap Creek near Belknap Lake for 1913.

1) ¢צ.	January.		February.		March.		April.		May,		June.	
	Gauge Height.	Discharge.	Gauge 'Height.	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. ft .	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.
1.	$0 \cdot 7$	8	$0 \cdot 7$	8		11		11		35		215
${ }_{3}^{2}$.		¢		s		11		11		30		22 S
4.		8		,		11		10		33	3.2	245
5		S		s		11		10		40		240
6		5		8		11		10		48		226
7		is		is		11		10		55	$3 \cdot 0$	212
s		s		5	$1 \cdot 0$	11		10		63		198
9		s		s		11		9	1.95	70		184
10.	1). 71	S		3		11		9		69		170
11	$!$,	11.7	\%	1.	11	$0 \cdot 8$	9		69	$2 \cdot 7$	156
12		-		10		11		21		68		156
13.		s		12	$1 \cdot 11$	11		33		67		156
14.		s		15		11		4.5		66	$2 \cdot 7$	156
15	11.7	s		17		11	$1 \cdot 8$	57		66		156
16		3		19		11		58	$1 \cdot 9$	65		1.5
17		-		22		11		59	...	05		1.5.5
18.	...	is		24		9		60		64		1.54
19.		,		27		9		60		fi3		153
20.		s		30	$0 \cdot 8$	9	\ldots	61		62		152
21.		8	$1 \cdot 5$	33		9		62	$1 \cdot 85$	61		15:
22.	$0 \cdot 7$	8		25		9		63		75		151
23.		8		18		11	-	64		So		150
24		S	$1 \cdot 0$	11		11		(55		103		149
25		\therefore		11	$1 \cdot 9$	11	1.9	65		117	$2 \cdot 9.5$	148
26		s		11				60		131		151
27.		,		11		11		5.5		145		154
23.		s	11		11	. .	50		159	$2 \cdot 7$	156
29		\therefore				11		4.5		173		156
30.	$0 \cdot 7$	8				11		40		187		150
31.		s			.	11			$\because \cdot 4$	202		

SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of Belknap Creek near Belknap Lake for 1913-Con.

BOULDER CREEK.

Location.-Section 28, township 3, range 27, west of 6 th meridian, near mouth of creek and near Jones lake.

Records Available.-January 1 to October 18, 1913.
Winter Conditions.-Stream frozen parts of January, February, and March.
Gauge.-A fine wire is stretched tightly across the stream, and the distance down to the surface of the water is measured with a graduated rod. This rod is graduated just like an ordinary staff gauge, so that the actual readings are reversed, i.e., for a higher stage there is a smaller gauge reading.

Channel.-Bed of stream covered with rocks, giving an uneven bottom but good control.

Discharge Measurements.-Four meter measurements during 1911, 1912, and 1913 show good agreement, and cover all but the highest stages.

Accuracy.-The roughness of the bed of the stream will tend to impair the accuracy.

Boulder creek flows into Jones creek just below Jones lake in section 33, township 3, range 27, west of the 6th meridian, at an altitude of something like 1,950 feet. It drains a small mountainous watershed with an altitude of from 3,000 to 8,000 feet.

The flow of Boulder creek could easily be included in the development of Jones creek for hydro-electric power. An outline of a proposed scheme of development is given under Jones creek.

The flow of this creek is being investigated in connection with Jones creek for the Vancouver Power Company, by Messrs. Anderson and Warden, Civil Engineers, Vancouver. The gauge readings supplied by their men are combined with meter measurements made by the engineers of this survey to give the flow of the stream as shown below.

Discharge Measurements of Boulder (Creek Mouth (Jones lake), 1911, 1912, and 1913.

Note.-This gauge records the distance down from a fixed wire. Hence the readings are less for a higher discharge.

SESSIONAL PAPER No. 25 f
Monthly Discharge of Boulder Creek near Jones lake for 1913.

Daily Gauge Heights and Discharges of Boulder Creek near Mouth for 1913.

Day.	January.		February		March.		April.		May.		June.	
	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge	(ialuge Height.	Discharge.
		Sec.ft.	Feret.	seee -ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feef.	Sec.-ft.	Feet.	Sec.ft.
1	$110 \cdot 6.5$	19	10.75	15	Frozen.		10.50	$1: 3$	10.5.	25	9.301	240
2	$10 \cdot 6.5$	19	$10 \cdot 75$	15			110.4 .3	12	110.5 .5	25	19.25	250
:	Frozen.		$10 \cdot 75$	15	$10 \cdot 80$	13	11.3 .5	12	10. 4 +11	22	9. 25	250
4			10.75	15	$10 \cdot 80$	13	10.4.)	12	111. fil 1	2	9.32	236
.			Frozen.		11). 711	16	11.85	12	11 - fin	\because	(1) 51	141
fi					11).31	16	$1 . . .3$	12	11.511	\because	9. 411	140
7.					$10 \cdot 65$	19	10.9 .5	12	$10 \cdot 15$	\%	$9 \cdot 3$	190
,					$10 \cdot 60$	22	10.9 .5	13	9.7.5	1.51	9.80	160
9					111.fiol	22	11.50	12	9. ${ }^{\text {(i) }}$	141	9.8)	140
10					$10 \cdot 61$		111.7 .5	15	19.71	161	! - M	140
11.			Frozen..		$10 \cdot 65$	19	111.41	37	9.8.5	15)	9.30	140
12..			$10 \cdot 85$	12	$10 \cdot 65$	19	11.) 610	111.	9.961	120	9.30	140
13.			111.4 .5	1:	10.70	$1 i^{\prime}$	11.15	7.	9.14)	121	4. 50	$2(\mathrm{M})$
14.			$110 \cdot 81$	13	10.70	1i)	11.2 .5	35	11.10 .5	91.	(1) [6)	180
1.5			$10 \cdot 40$	37	1\%.71	16	11.25	if	9.9 .5	113	$3 \cdot 80$	140
16.			9.410	140	$10 \cdot 65$	19	110.35	43	111.111	105	(1). 80	140
17.	Frozen		9.8.s	$1: 30$	10. 30	$2 \times$	11).3.9	43	11.10	85	9.9.5	113
1s			11.30	S1	$10 \cdot 60$	22	16.211	(i.)	16.1 .5	75	9.9)	120
19			11.8 .811	9	Frozen..		9.90)	123	() 9.9	113	(1. 50	2041
20			10. 3.5	2.5			10.11.)	9.3	10.100	105	$9 \cdot 40$	220
$\because 1$			111. Sin	23			(9.4.5	$13: 10$	111.10	105	9.70	160
22			$10 \cdot 65$	19			111. 1.5	75	9. 411	140	9.71)	160
23.			Frozen.				111.2 .5	\therefore	9. 511	$2(16)$	9.70	(0^{\prime}
23							111.30	S11	9. 34	210	9.70	1619
2.5							111.41	37	9. 510	24:	9.70	1610
$2{ }^{1}$							111.8	58	19.30	200	9.70	1 iHO
27.							111.3 .5	4.3	(1). 50	200	11. 510	160
28.							111.4 .5	33	(1). 1.5	170	!1. 11	$16 i 1$
$3!$	111.71	16			Frozern		111.4 .5	33	! $1 \cdot \mathrm{sk}$	1411	!1. -11	1 (in)
310.	$10 \cdot 70$	16			$10 \cdot 80$		111.3)	23	9. 311	140	!1. -11	1 in
31	11.511	16			10.80	1.3			4. 619	1.41		

Datly Cituge Heights and Discharges Boulder Creek near MIouth for 1913 -Con.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge	Gauge Height.	Discharge.								
	Feet.	Sec.-ft.										
1	9.75	150	$10 \cdot 35$	43	$10 \cdot 75$	15	$10 \cdot 65$	19	$10 \cdot 40$	37	$10 \cdot 30$	50
\cdots	$9 \cdot 911$	120	$10 \cdot 35$	43	$10 \cdot 75$	1.5	10.79	16	10.50	28	$10 \cdot 40$	37
3	$10 \cdot 00$	105	$10 \cdot 35$	43	$10 \cdot 65$	19	10.70	16	$10 \cdot 55$	25	10.45	\%3
4.	$10 \cdot 00$	105	$10 \cdot 40$	37	9.65	170	$10 \cdot 70$	16	$10 \cdot 80$	28	$10 \cdot 45$	33
:	$9 \cdot 80$	140	$10 \cdot 45$	32	9.50	200	$10 \cdot 70$	16	$10 \cdot 45$	33	$10 \cdot 45$	33
6	$9 \cdot 60$	180	$10 \cdot 4.5$	28	$10 \cdot 00$	105	$10 \cdot 70$	16	$10 \cdot 20$	65	$10 \cdot 50$	28
7	$9 \cdot 50$	200	$10 \cdot 50$	28	$10 \cdot 30$	50	$10 \cdot 65$	19	$10 \cdot 45$	33	$10 \cdot 40$	37
8	9.80	140	$10 \cdot 30$	50	$10 \cdot 45$	32	$10 \cdot 60$	22	$10 \cdot 35$	41	$10 \cdot 50$	\therefore
1	$9 \cdot 90$	120	$10 \cdot 45$	32	$10 \cdot 35$	4.3	$10 \cdot 50$	28	$10 \cdot 10$	S5	$10 \cdot 50$	23
10.	$9 \cdot 40$	220	12.50	28	10.35	43	$10 \cdot 55$	25	$10 \cdot 29$	65	$10 \cdot 50$	25
11	9.85	130	$10 \cdot 55$	25	$10 \cdot 40$	37	8. 80	340	$10 \cdot 35$	44	$10 \cdot 50$	25
12	$9 \cdot 60$	180	19.55	25	$10 \cdot 45$	32	$9 \cdot 50$	200	10.45	33	$10 \cdot 50$	25
13	$9 \cdot 70$	160	$10 \cdot 60$	22	$10 \cdot 50$	28	9.40	220	$10 \cdot 50$	28	$10 \cdot 55$	25
11	$9 \cdot 90$	120	$10 \cdot 50$	28	$10 \cdot 55$	25	$10 \cdot 00$	105	10.55	25	$10 \cdot 55$	2.
1.).	$10 \cdot 00$	105	$16 \cdot 50$	-8	$10 \cdot 60$	22	$10 \cdot 15$	75	$10 \cdot 55$	25	$10 \cdot 50$	25
16.	$10 \cdot 65$	95	10.6)	22	$10 \cdot 60$	22	$10 \cdot 30$	50	9.50	200	$10 \cdot 55$	25
17.	$10 \cdot 0.5$	95	$10 \cdot 35$	43	$10 \cdot 65$	19	111.35	43	$10 \cdot 0.5$	9.5	$10 \cdot 55$	25
18.	10.111	105	1(30	50	10. 313	50	$10 \cdot 35$	43	$10 \cdot 25$	-7	$10 \cdot 60$	22
19.	9.80	140	$10 \cdot 40$	37	$10 \cdot 50$	28	$10 \cdot 20$	65	$10 \cdot 30$	50	10.65	19
$\because 0$	$9 \cdot 80$	140	$10 \cdot 50$	28	$10 \cdot 60$	22	$10 \cdot 20$	65	$10 \cdot 35$	44	$10 \cdot 65$	
21	9.85	130	$10 \cdot 60$	22	$10 \cdot 65$						$10 \cdot 65$	19
22.	$9 \cdot 90$	120	$10 \cdot 60$	22	$10 \cdot 20$	65	$10 \cdot 30$	50	$10 \cdot 49$	37	$10 \cdot 65$	19
23.	9.95	113	$10 \cdot 60$	22	$10 \cdot 40$	37	9.85	130	$10 \cdot 50$	28	11.95	19
24.	$10 \cdot 10$	85	$10 \cdot 65$	19	$10 \cdot 55$	25	9.70	160	9.50	200	$10 \cdot 65$	19
25.	$10 \cdot 10$	85	$10 \cdot 65$	19	$10 \cdot 66$	22	$10 \cdot 15$	75	9.95	112	$10 \cdot 70$	16
26.	$10 \cdot 20$	65	10.65	19	$1 \mathrm{~J} \cdot 65$	19	$10 \cdot 30$	5.1	$10 \cdot 15$	75	$10 \cdot 75$	15
27.	$10 \cdot 25$	58	$10 \cdot 70$	16	10-6.5	19	$10 \cdot 35$	44	$10 \cdot 15$	75	$10 \cdot 75$	1.7
28	$10 \cdot 30$	50	10.70	16	$10 \cdot 40$	37	$10 \cdot 40$	37	$10 \cdot 3$	50	10.70	111
29.	$10 \cdot 1$)	85	$10 \cdot 70$	16	$10 \cdot 50$	28	$10 \cdot 55$	28	$10 \cdot 35$	44	1.75	1.5
30.	11. 3 ;	50	10.75	15	$10 \cdot 66$	22	11.60	25	$10 \cdot 30$	50	10.75	1.5
31.	$10 \cdot 35$	43	$10 \cdot 75$	15			$10 \cdot 55$	25			10.7.)	15

BRANDT CREEK AT MOUTH.

Location.-Section 4, township 7, range 7, west of 7th meridian.
Records Available.-Continuous records since October 19, 1912.
Winter Conditions.-Open water all year.
Gauge.-Vertical staff nailed to tree. Mostly daily readings.
Channel.-Bed of stream covered with rocks, giving a very rough bed. There is ordinarily good control, but there is a possibility of backwater from the Mesliloet river at very high stages.

Discharge Measurements.-One measurement in 1912, and nine in 1913, give good agreement and are well distributed except for high water.

Accuracy.-Accurate except for high stages.

BRANDT CREEK。

Brandt creek rises in the mountains to the east of the Mesliloet river, at an eleration of about 3000 feet, and discharges into the Mesliloet river come (i) miles from its month at an clevation of 250 feet. It is part of the Burrard Inlet drainage.

The ammal precipitation in the Bramble ared watershed is probably between 120 and 150 inches. In the winter the snowfall is between 2 and 6 feet. In the higher altitules there are showfelds which remain practicaly all the year.

At the mouth of the creck the water never freezes over. Higher up, near the mouth of Young creek, there is very little ice, so that open water conditions obtain there also, practically all the year. The heavy snowfall seems to protect the stream from freezing without obstructing the flow to any extent.

The Westminster Power Company proposes to include Brandt creek and its tributaries, Norton and Young creeks, in its high-head development. Norton lake is to be used as a storage and equalizing reservoir, and water is to be diverted into it from upper Brandt creek and from Young lake, as well as from Belknap creek and possibly even Hixon creek. The main pipeline will run from Norton lake to the power plant situated near the mouth of Brandt creek. Wooden pipe will be laid as far as possible on the hydraulic gradient to a small surge reservoir. From that point steel penstocks will be laid to the power-house. This will give a head of about 2000 feet.

Storage dams will be constructed on Young lake, Norton lake and Ann lake. The storage capacity at these three lakes is sufficient to impound practically the whole freshet, and give an equalized flow during the whole year, practically equal to the combined run-off of all the streams. The total amount of water available, while not nearly as great as that of the main Mesliloet river, will yet develop a large amount of power on account of the high head and the good storage facilities.

Gauging stations have been established by this survey at the mouth of Brandt creek and on Brandt creek above Young creek, as well as on the tributaries, Young and Norton creeks. It was hoped that the gauge at the mouth of Brandt would give some idea of the flow at the upper stations, but this has not been found practicable. As soon as facilities are provided for taking more regular gauge readings on the upper stations the station at the mouth of Brandt creek wil be abandoned.

Discharge Measurements of Brandt Creek Mouth. 1912 and 1913.

	Date.	Hydrographer.	Meter No.	Width.	Area of Section.	$\begin{aligned} & \text { Mean } \\ & \text { Velocitr. } \end{aligned}$	Height	Discharge.
	1912.			Feet.	sq. it.	Ft. persec.	Feet.	Sec.-ft.
()et.	19.	C. G. Cline	1,016	. \cdot	$2:$	1 M	$2 \cdot 02$	- ${ }^{\text {a }}$
1913.								
11.		H.C. Hughes...	1,673	411	\therefore	$\therefore \because$	$\because 6.3$	$12 \cdot$
June		do	1,673	36	!	1.91	$\because 45$	14
	15.	do	1, \quad 为	36	H:	$1: 3$	$\therefore 35$	it.s
	27.	do	1,673	36	\because	$2 \cdot 18$		11:
July	3.	C,	1,673	36	は2	$1 \cdot 11$	$\therefore 26$	$59 \cdot 4$
	29	do	1,673	1.	\because	1 \because	1.62	13.11
$\because:$	21.	F MacLachlan	1,673	\because	1- :	1).47	1 12	-
		do	1,521	41	\cdots	$1 \cdot 3.3$	2	\because
	13.	do	1,521	\%	21.3	1.13	1-31	-

Note - Different zection.

5 GEORGE V., A. 1915
Monthly Discharge of Brandt Creek Mouth for 1913.

Month.	Discharge in Second-Feet.			Run-off.
	Maximum.	Minimum.	Mean.	Total in acre-feet.
January	26	10	$16 \cdot 2$	996
February	83	9	$24 \cdot 8$	1,380
March..	53	12	26.0	1,600
April	165	16	84.8	5,050
May...	237	30	124.0	7,620
June	237	65	$115 \cdot 0$	6,840
July .	174	12	$50 \cdot 7$	3,120
August	48	6	$10 \cdot 4$	640
September	174	6	$34 \cdot 1$	2,030
October ...	408	8	$47 \cdot 1$	408
November	408	14	$105 \cdot 0$	6,250
December	246	18	$55 \cdot 0$	3,380
The year	408	6	$57 \cdot 8$	41,800

Note.-Accuracy "A" and "C".
Monthly Discharge of Brandt Creek Mouth for 1912.

Month.	Discharge in Second-Feet.			Run-off.
	Maximum.	Minimum.	Mean.	Total in acre-feet.
November	318	21	113	6,720
December....	110	18	38	2,340

[^2]SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of Brandt Creek at Mouth for 1912.

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Brandt Creek near Mouth for 1913.

SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of Brandt Creek at Mouth for 1913. -Concluded.

BRANDT CREEK ABOVE YOUNG CREFK.
Location. -Section 10, township 7, range 7, west of 7 th meridian.
Records Available.-Continuous records since June 1, 1913.
Winter Conditions.-Heavy snowfall but very little ice on the stream.

Gauge.-Vertical staff gauge spiked to tree trunk. Ciauge readings once or twice a week.

Channel.-Bed of stream very steep, with rocks and boulders. Wiater swift at higher stages.
 agreement and are well distributed except during high water.

Accuracy. - Infrequency of gauge readings rather impairs accuracy obtained from a good set of meter measurements.

Discharge Measurements of Brandt Creek River above Young Forks, 1913.

	Date.	Hydrographer	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
	1913.			Feet.	Sq.ft.	Ft. per sec.	Feet.	Sec.-ft.
June	3.	H. C. Hughes.	1,673	11	21.5	$3 \cdot 32$	1.70	$73 \cdot 5$
"	10	do	1,673	11	$16 \cdot 5$	$\bigcirc \cdot 24$	1.50	$37 \cdot 11$
"	18	do	1,673	11	18.0	$3 \cdot 10$	$1 \cdot 60$	i4.
July	7.	do	1,673	10	$12 \cdot 9$	1.62	1.30	21.0
Sept	30	${ }_{\text {F }}$ do	1,673	10	8.4 8.2	1.56 1.28	(1).70	14.69 19.38
Sept.	23.	F. MacLachlan	1,673	9	8.2	(.28	0.51	$2 \cdot 38$

Note.- ${ }^{1}$ Gauge washed out January, 1913.

Monthly Discharge of Brandt Creek above Young Creek for 1913.

Moxth.	Discharge in second-Feet			RUN-OFF.
	Maximum.	Minimum.	Mean.	Total in acre-feet.
June.	$76 \cdot 0$	22.6	40.9	2,440
July	$54 \cdot 0$	$7 \cdot 0$	25.5	1,570
August	$5 \cdot 5$	1.4	$2 \cdot 58$	160
September	$6 \cdot 2$	$2 \cdot 6$	$\because \cdot 9$	230
October.	$220 \cdot 0$	1.5	$19 \cdot 3$	1.190
November	$22 \cdot 0$	$3 \cdot 0$	$7 \cdot 1$	422
December.	$4 \cdot 1$	$2 \cdot 1$	$3 \cdot 0$	15.5

SESSIONAL PAPER No. 25 f

Daily Gauge Heights and Discharges of Brandt Creek above Young Creek for 1913.

5 GEORGE V., A. 1915
Daily (iatge Heights And Discharges of Brandt Creek above Young Creek for 1913-Con.

CHEHALIS RIVER.
Chehalis river has its source in Chehalis lake at an elevation of 700 feet, and discharges into Harrison river near Harrison Mills at an elevation of between : 30 and 40 feet. It is part of the Harrison-Fraser dranage; the drainage areat as measured from the Railway Belt map) (dated January 1, 1911, coale 7 . so milesper inch) is 200 miles. The ammal precipitation is about so to 90 inches: there is very heavy snow in winter in all except the lowest parts of the water shed, and the winter conditions are fairly severe. At the mouth, however, the stream is open all the year round.

The Chehalis river, from its source in a rough mountainous country, flows through a wide valley, containing very fine timber, to Chehalis lake. Stadia reerk, after tombling over a 2 ono-font hlutif. enters from the west in the valler. Chehalis lake is a deep mountain lake about 7 miles long, with rocky cliffs rising from the water's edge. It is an excellent storage site for power purposes. The lake is well stocked with fish. At the lower end of the lake there is a large \log jam at the mouth of the canyon. A dam could be constructed at any one of a mamber of gond places in this camyon. Five mile below the lake the wet fork (Statlu creek) flows into the main river. This creck has no lake on it, and it is much more flashy than the main river.

For the last mile or so of its course the Chehalis flows through a delta, and splits up into a number of owemos, with frequent changes of the dhamel. The deposits from the ('hehali- are eralually filling up) Harrion hay, and at
low water in the Harrison river very extensive flats are exposed. The flow from Harrison lake through the Harrison river is controlled largely by the har which the Chehalis has formed across the Harrison. The Harrison river rises and falls with the Fraser river. During the low water this bar on the Harrison at the mouth of the (hehalis is a great hindranoe to navigation and logging on the Harrison river, which is the comecting link het ween the 30 miles of natigation on Harrison lake and the Fraser river tidewater.

To reach the Chehalis river it is necessary to go by water either from Harrison Mills or Harrison Hot springs: there is no road yet, though survers have been made for one. From the mouth of the river there is an old logging road for 5 miles to an abandoned logging camp at Boulder creek. This road has been repaired sufficiently for use as a pack trail for horses, and the pack trail has recently been extended to Chehalis lake.

The Chehalis valley was surveyed by A. W. Johnston in 1903 while locating the north limit of the Railway Belt, but with the exception of two ranches on the delta on Harrison bay, none of the country has been settled. It is visited occasionally by timber cruisers and Indians from the reserve at the mouth.

There is a fall of 650 feet between Chehalis lake and the mouth, a distance of 11 miles. There is an excellent storage reservoir in Chehalis lake.

The river station was established November 4, 1911, by C. G. Cline. It is located a mile and a half from the mouth opposite the foot of the first hill on the trail up the river. A chain gauge, supported from a pole fastened to two trees, is located on the right bank; its datum is referred to three bench-marks. Measurements are made hy wading, except at high water, when cable meaturements are made from a canoe, one quarter of a mile below the gauge. The measuring section is fair; the control is good, the banks high on one side, current uniform, and one channel at low water. At high water, however, the river overflows its left bank and forms two channels. The bed of the stream is liable to cut and shift, expecially during the freshet.

The power possibilities of Chehalis river are being investigated by the Vancouver Power Company. The Canadian Pacific Railway at one time made application for power privileges on the river.

CHEHALIS RIVEIR.
Location.-One and a half miles from mouth in section 14, township 4, range 30 , west of 6 th meridian.

Records Available.-November and December, 1911; Narch S to December 31, 1912; January 1 to December 31, 1913.

Winter Conditions.-Open water at gauging station all year.
Gauge.-Chain gauge suspended over river by pole spiked to two trees on the bank.

Channel.-Rocky bed, permanent channel, water swift at higher stages.
Discharge Measurements.-Two in 1911, five in 1912, and two in 1913 agree fairly well, and cover all but the highest and lowest stages.

Accuracy.-Fair.

Discharge Meantrements of (hehalis River 112́2 miles from mouth, 1911, 1912, 1913.

Monthly Discharge of ('hehalis River 11,2 miles from mouth for 191:3
[Drainage area, 200 square miles.]
\qquad

Dhincharge in Second-Feet.
RuN-Off.

Montfr.						
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in arre-feet.
January	1,230	270	5.51	$2 \cdot 76$	$3 \cdot 18$	33,900
February	12,500	340	1,350	6.75	$7 \cdot 03$	75,000
March	3,100	580	1,0.4	5.42	6.25	66,600
April.	3,450	710	1,465	$7 \cdot 32$	$8 \cdot 17$	as. 000
May..	5,550	1,100	2,463	$12 \cdot 30$	14.14	151,300
June.	2.200	1,430	1,693	$8 \cdot 17$	$9 \cdot 45$	103,800
July.	1,550	450	916	$4 \cdot 58$	$5 \cdot 3$	56,300
August	750	230	441	$2 \cdot 20$	$2 \cdot 54$	27,100
September.	4,850	250	1,010	$5 \cdot 05$	5-93,	60,100
October...	7.700	270	1,765	- 82	$10 \cdot 17$	108,540
Norember	1.5, 11411	420	3,295	16.48	1-411	195, 800
December.	4,350	820	1,615	8.08	$9 \cdot 3$ 2	99,300
The year period.	15, C00	230	1,467	7.35	$99 \cdot 60$	1,061,700

SESSIONAL PAPER No． 25 f
Daily Gauge Heights and Discharges of Chehalis River $11 / 2$ miles from Mouth for 191：3．

1） 18.	January．		February．		March．		April．		119，5		June．	
	（iatuge Heisht	I）i－ charese	（iature Heroht	Dis－ charge	Gilume Height	Dis－ charge	（i．：1．．．． Hunit	（）：－ chation	（ialluw Herght	Dis－ charge	Gature Helght	Dis－ charge
	Feet．	Sec．－ft．	Feet．	sec．－ft．	Feet．	S＇ec．－ft．	Feet．	seer－ft．	Feet．	Sec．－ft．	Feet．	Sec－－ft．
1	3－6	919	$3 \cdot 2$	firn	3.4	750	3.7	990		1，490	4．7	2，200
2	$3 \cdot 1$	！ 111	3．2．5	（13：\％	$3 \cdot 4$	75	$\therefore 1$	（11）	$2 \cdot 15$	1， 2×0	4	2.200
3	$3 \cdot 5$	$\because 11$	$\because \cdot 1$	340	$3 \cdot 4$	7.91	$3 \cdot 4$	3.00	$4 \cdot 1$	1.320	4．fi	$\because .1171$
\ddagger	$3 \cdot 3.5$	－111		fll	8.5	520	3.3 .5	710	$4 \cdot 75$	1.211	4.55	1.1111
5	$3 \cdot \because$	1i，	$3 \cdot 11$	450	：3．1i	900	$3 \cdot 4$	350	$4 \cdot 13.5$	1，270	$1 . i$	1，520
（i）	$3 \cdot 2$	firil	$\because!$	420	is，	1，06C	$3 \cdot 4$	750	$3 \cdot 5$	1，100	1．4	1，670
－	$3 \cdot 15$	$\therefore \mathrm{S}$	$\cdots \cdot 1$	よい1	$3 \cdot 8$	1.1060	$3 \cdot 45$	$7: 1$	$4 \cdot 35$	1，619）	4.4	1．10）
－	$3 \cdot 1$	54\％	\％．11	かり1	$3 \cdot 6$	！！ 11	\therefore S	－－1	$4 \cdot 95$	1．1111	$4 \cdot 5$	1， $2=0$
＂	$3 \cdot 0$	いい	2.1	120	3.8	820	$3 \cdot 5$	$\therefore 20$	14.5	$\because .920$	4.4	1，670
$10)$	$2 \cdot 4$	420	$2 \cdot 8$	360		！ 111	$3 \cdot 8$	1，060）	10.	2.600	1.3	1，550
11	$\cdots 8.8$	390	\cdots－ 8	： 3 ，	$3 \cdot 5$	820	$4 \cdot \frac{1}{3}$	1，430	± 4	$\because 311$	14	1，670
12	\because	3411	2.75	341	$\because \cdot 6$	（114）	$4 \cdot 3$	1．590	$\therefore \therefore$	1．1010	$4 \cdot 5$	1．20
13	$2 \cdot 7$	3111	－	Stior	$\because 7$	！いい	$4 \cdot 45$	1．750	\therefore is	$\pm .600$	4.35	1.610
$1+$	$\because 7$	．1111	$2 \cdot 9$	4211	3.7	！2al	$4 \cdot 3$	1.550	$\therefore 1.5$	i． 1111	$4 \cdot 3$	1．550
1.5	$\because \cdot 1$	230	$\therefore!$	1.161	$3 \cdot 7$	980	＋．	1.439	$\therefore \mathrm{S}$	5，550	$4 \cdot 4$	1．fis！
16	$2 \cdot 6$	270	$7 \cdot 1$	12，500	$3 \cdot$	1，060	1．1	1.320	$8 \cdot 9$	4． 1010	$4 \cdot 4$	1． 130
17	$2 \cdot 6$	270	is	． .3 （6）	S． 1	3.100	$4 \cdot 2$	1.430	． 11.5	3．200	$4 \cdot 3$	1.5501
1	$\because \cdot 1$	276	4.9	2.75	4.7	2，200	$4 \cdot 3$	1.559	$4 \cdot 6.5$	2.1011	4 ．	1．551
19.	$2 \cdot 6$	230	$4 \cdot 9$	1．$\because 11$	＋	1.829	$4 \cdot 6$	2.000	$4 \cdot 55$	1．910	41	1． 180
20.	$\because 7$	310	$4 \cdot \underline{ }$	1，430	＋．	1，550	4． 4.1	2.100	4.45	1，250	4.5	1.820
$\because 1$	$2 \cdot 7$	310	：3．！	1．111	S－4．	1，180	S． 1	3，450	14	1，670	4.1	1，670
\because	$2 \cdot 8$	360	$3 \cdot 7$	9×11	\therefore－1．i）	940	$4 \cdot 1$.	2，750	12	1.430	4.5	1，820
\％	$2 \cdot 7$	310	$3 \cdot 5$	－11	$3 \cdot 1$	750	4.75	2，	1．	1．．5．71	4．4	1，670
24	3.3	15，	$3 \cdot 45$	－8，	$3 \cdot 15$	540	4.4	1，67）	1.7	1，670	$4 \cdot 3$	1．550
0.5	411	1，230	S． 1	750	$3 \cdot 3$	670	$4 \cdot 3$	1，550）	1． 10	2.1000	$4 \cdot 3$	1，550
26	3.7	9811	$3 \cdot 35$	711	$3 \cdot \underline{ }$	6000	4．4．5	1．8．31	4.11	2.850	$4 \cdot 25$	1． 4 ！ 1
27	$3 \cdot 5$	311	$3 \cdot$.	670	$3 \cdot 5$	S20	4.4	1．67）	\therefore ；	4.350	1．	1，43！
28	$3 \cdot 4$	7511	3．3	6i9）	3.7	9 O 1	$4 \cdot 3$	1．85）	$4 \cdot 9$	2.350	4.3	1．550
29	3.1	751			4．2	1，430	$4 \cdot 2$	1．131	4．6	2,003	$4 \cdot 25$	1.490
319	$3 \cdot 3$	6i， 11			$4 \cdot 3$	1，430	1.15	$1 .: 301$	1．5	1．820	$4 \cdot 25$	1，490
1	$3 \cdot \underline{2}$	Binf			$\therefore 11$	1，14：			1 1	2,0100		

Daily Gauge Heights and Discharges of Chehalis River $11 / 2$ miles from mouth for 1913-Con.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height	Discharge						
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	$4 \cdot 1)$	1,230	$3 \cdot 0$	480	$2 \cdot 6$	270	$2 \cdot 7$	316	$2 \cdot 9$	420	$4 \cdot 8$	2,450
2	$3 \cdot 9$	1,140	$2 \cdot 9$	420	$2 \cdot 7$	310	$2 \cdot 7$	310	$3 \cdot 0$	480	$4 \cdot 6$	2,000
3	$4 \cdot 0$	1,230	$2 \cdot 85$	390	$4 \cdot 7$	2,200	$2 \cdot 6$	270	$3 \cdot 1$	540	4.45	1,75C
4	$4 \cdot 0$	1,230	$2 \cdot 85$	390	$5 \cdot 4$	4,850	$2 \cdot 6$	270	$4 \cdot 3$	1,550	$4 \cdot 3$	1,550
5	$4 \cdot 2$	1,430	$2 \cdot 9$	420	$5 \cdot()$	3,100	$2 \cdot 6$	270	$4 \cdot 0$	1,230	$4 \cdot 3$	1,430
6	$4 \cdot 1)$	1,230	$3 \cdot 0$	480	$4 \cdot 6$	2,600	$2 \cdot 7$	310	$4 \cdot 1$	1,320	$4 \cdot 1$	1,320
7	$4 \cdot 1$	1,230	$3 \cdot 0$	450	$4 \cdot 2$	1,430	3.8	1.060	$4 \cdot 2$	1,430	$4 \cdot 5$	1,820
8	$4 \cdot 1$	1,320	$2 \cdot 9$	420	$4 \cdot 3$	1,550	$3 \cdot 9$	1,140	4.9	2,750	$4 \cdot 3$	1,550
9	$4 \cdot 2$	1,430	$2 \cdot 8$	360	4.4	1,670	$4 \cdot 2$	1,430	$4 \cdot 9$	2,750	$4 \cdot 1$	1,320
10	$4 \cdot 3$	1,550	$2 \cdot 9$	420	$4 \cdot 2$	1,430	$5 \cdot 0$	3,100	$5 \cdot 2$	3,850	$4 \cdot 0$	1,230
11	$4 \cdot 2$	1,430	$2 \cdot 8$	360	$4 \cdot 0$	1,230	$5 \cdot 2$	3,850	$4 \cdot 6$	2,000	$3 \cdot 85$	1,100
12	$4 \cdot 1$	1,320	$3 \cdot 2$	600	$3 \cdot 9$	1,140	$5 \cdot 6$	5,800	$4 \cdot 3$	1,550	$3 \cdot 7$	9010
13	$3 \cdot 8$	1,060	$3 \cdot 1$	540	3.7	980	15.0	7,700	$4 \cdot 1$	1,320	$3 \cdot 6$	900
14	$3 \cdot 8$	1,660	$3 \cdot 1$	540	$3 \cdot 55$	860	$5 \cdot 7$	6,250	$4 \cdot 2$	1,430	$3 \cdot 9$	1.140
1.5	$3 \cdot 6$	900	$3 \cdot 0$	480	$3 \cdot 4$	750	$5 \cdot 3$	4,350	$4 \cdot 5.5$	1,910	$5 \cdot 3$	4,350
16	$3 \cdot 5$	820	$2 \cdot 9$	420	$3 \cdot 3$	670	$5 \cdot 0$	3,100	$7 \cdot 2$	13,500	$5 \cdot 0$	3,100
17	$3 \cdot 4$	750	$3 \cdot 2$	(i) $)^{\prime}$	$3 \cdot 15$	570	$4 \cdot 6$	2.600	- 1	3,450	4.8	2,450
18	$3 \cdot 35$	71.	$3 \cdot 4$	750	$3 \cdot 11$	480	4.7	2,200	$4 \cdot 9$	2,750	$4 \cdot 6$	2,000
19	$3 \cdot 3$	670	$3 \cdot 2$	600	$2 \cdot 9$	420	$4 \cdot 6$	2,000	$4 \cdot 9$	2,750	$4 \cdot 3$	1,550
20	$3 \cdot 25$	630	$3 \cdot 1$	540	$2 \cdot 8$	360	$3 \cdot 8$	1,060	4.9	2,450	$4 \cdot 1$	1,320
21.	$3 \cdot 1$	3411	$3 \cdot 1$	540	$2 \cdot 8$	360	$3 \cdot 7$	980	$4 \cdot 5$	1,820	$4 \cdot 0$	1,230
22.	$3 \cdot 0$	450	$3 \cdot 0$	480	$2 \cdot 7$	310	$3 \cdot 7$	980	$4 \cdot 2$	1,430	$3 \cdot 9$	1,140
23	2.95	450	$2 \cdot 9$	420	$2 \cdot 6$	270	$3 \cdot 65$	940	$4 \cdot 2$	1,430	$3 \cdot 8$	1,060
24.	$3 \cdot 2$	600	$2 \cdot 85$	301	$2 \cdot 6$	270	$3 \cdot 5$	820	$7 \cdot 5$	15,000	$3 \cdot 7$	980
35.	$3 \cdot 3$	670	$2 \cdot 8$	360	$2 \cdot 55$	250	$3 \cdot 4$	750	$6 \cdot 1$	8,200	$3 \cdot 6$	900
26.	$3 \cdot 2$	600	2.75	340	$2 \cdot 6$	270	$3 \cdot 3$	670	$5 \cdot 6$	5,800	$3 \cdot 5$	820
27	$3 \cdot 2$	600	$2 \cdot 9$	420	$2 \cdot 6$	270	$3 \cdot 3$	670	$5 \cdot 4$	4,850	3. 5	820
28	$3 \cdot 1$	540	$2 \cdot 6.5$	290	$3 \cdot 4$	750	$3 \cdot 2$	603	$5 \cdot 3$	4,350	$4 \cdot 8$	2,450
29	$3 \cdot 1$	540	$2 \cdot 6$	270	$3 \cdot 3$	670	$3 \cdot 1$	540	$5 \cdot 1$	3,450	$4 \cdot 65$	2,100
30	$3 \cdot 0$	480	$2 \cdot 55$	250	$3 \cdot 2$	600	$3 \cdot 05$	510	$5 \cdot 0$	3,100	$4 \cdot 5$	1,820
31	$3 \cdot 1$	540	$2 \cdot 5$	230			$3 \cdot 0$	480			$4 \cdot 2$	- 1,430

CHILLIWACK RIVER.

Location.-Five miles above Sumas lake in section 1, township 23, east of Coast meridian.

Records Available.-Continuous since 1911.
Winter Conditions.-Open water at gauging station all year.
Gauge.-Vertical staff gauge on rock-filled crib, Gauge readings daily.
Channel.-Rocky bottom, water deep, swift at higher stages, good control.
Discharge Measurements.-Eight measurements during 1911. 1912, and 1913 show good agreement and are fairly will distributed.

Accuracy.-Results are quite accurate.

CHILIIWACK RIVER.

The Chilliwack river has its source in Chilliwack lake at an elevation of 2,080 feet. It passes through the Vedder river chamel and empties into sumas lake, which is less than 100 feet above sea-level. The drainage area is about 450 square miles, about one-quarter of which lies in the state of Washington The district is very humid, the precipitation being from 40 inches to 70 inches per amum. The water is at present unused, but there are power possibilities on the stream.

Chilliwak River-Metering Station at Indian Dug out.
The control of the flow of this river is of great importance in comection with the Sumas Dyking Project. The Chilliwack river is subject to severe floods, and owing to its flat grade on the lower reaches, is a source of considerable damage to the rich farming districts in that locality. For the upper two-thirds of its length the river is separated from the valley of the Fraser by the Cheam mountains, the highest peak of which rises to an elevation of 9,000 feet. Opposite, on the south, mount Baker rises abruptly to an even greater height. The bottom slopes of the valley are well covered with timber, some of it of excellent quality. A wagon road has been constructed from the lower end of

Chilliwak River, looking downstream past Gouging Station.
the valley, near Chilliwack, some 8 miles up the river; beyond this there is evidence of an old trail very much overgrown, and impassible in many places. The slopes of the valley in its lower reaches are characterized by high bluffs of sedimentary or glacial origin subject to enormous slides or slips. The stream has a fast current and its bed is composed of large boulders that have been washed out of the many slides along its course. The elevation of Chilliwack lake is 2.080 feet, the shores and adjacent slopes being covered with alder and brush. The lake has an area of about 2,600 acres.

The lower reaches of this river seem to have been changed very much due to dyhes and other artificial conditions. Previously it seems to have spread over the country in a number of channels, most of which finally found their way to the Fraser.

The C'hilliwack river used to flow through what is now called the Luckakuck channel to the Fraser. Some twenty years ago the river was dammed and diverted by the residents living along that chamel (near sardis) and made to flow through the chamel of Vedder creek into sumas lake, and indeed the Chilliwack is locally referred to as the Vedder river.

There are excellent power possibilities on the Chilliwack river, but on account of inaccessibility and the probable high cost of development they have not been carefully investigated.

The station was established on November 14, 1911, by K. H. Smith. It is located about 6 miles from the town of Chilliwack and about 300 yards above the highway bridge known as the Vedder river crossing. The gauge is a standard vertical staff gauge, 8 feet long, and is attached to a rock-filled crib.

Measurements are made by current-meter from a canoe held in place by a cable attached to the cribbing to which the gatuge is secured, or by using a special traveller on the cable and suspending the meter from it.

The banks are moderately high and are protected by timber cribbing, confining the stream to a single channel.

There are two bench-marks which are referred to the datum of the gauge.

Discharge Measurements of Chilliwack River near Vedder River Hotel, 1911-14.

SESSIONAL PAPER No. 25 f
Monthly Discharge of Chilliwack River near Mouth for 1913.
(Drainaqe area, 450 square miles.)

Mosth.					1 CO	
	M....1..:1.	Minumata.	H1...n	Per square 41!	$\begin{gathered} \text { Depth } \\ \text { in inches } \\ \text { on } \\ \text { I ant: } \\ \text { are:t. } \end{gathered}$	Total 1:1 acre-feet
January	1,360	961)	1.20)	$\therefore \cdots$	$3 \cdot 119$	74, 4(4)
Fehruars	10,100	-1.5	1,942	$4 \cdot 31$	$4 \cdot 49$	108,030
Mareh	1,160:	1,020	1,064	$\cdots 37$	$\therefore \square$	
April.	3,260	960	1.557	3.45	$3 \cdot 5 \%$	92.6 (k)
llas	3,900	1. 2 ,	4.416	$\because-1$:11	2 O 2.060
June	12. - 'M	-3,920	4.879	10.62	11.	-1.19*1
July	$\therefore 104$	3, 620	5.724	12-72	11.54	$\therefore \therefore \cdot 11$
1.120-	3,440	1,250	2.302	: 1-	5.9010	111.1.1.
September	s, 304	1.	2.664	5.93	1 $\because 2$	
1)ember	10, ${ }^{\text {a }}$ (1)	(\#)	$\underline{2.870}$	$\cdots!$	-:	$1 . \cdot 1.11$
Novembrer	-, 36\%	1,5010	2,533	$\therefore \therefore$	5.20	150, 100
December	$\cdots 251$	96	1,350	$3 \cdot 46$	3. 994	95, 604
Th.'. 3 ar	12,201)	-1;	$\because 211$	6.12	31.85	1,98is, 400

Sote-Accuracy "A".

Daily Guage Heights and Discharges of Chilliwack River near Mouth for 1913.

Day.	January.		February.		March.		April.		Nay.		June.	
	Gauge Height	Dis- Chara	Gauge Height.	Ю!charet	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge	(i.a! Height.	Discharge.
	Feet.	Sec.-ft.										
1	1.7	1,250	1-	950	1.4	1,026	1 i.	190	$2 \cdot 2$	1,910	$5 \cdot 1$	8,9,90)
2	1.7	1,250	$1 \cdot 3$	960	1.4	1,020	$1 \cdot 3.5$		$2 \cdot 1$	1.1.0	Sns	12,200
3	1.7	1,250	1.3	". ${ }^{\text {a }}$	1.4	$1 . \because 1$	$1 \cdot 3$		$1 \cdot 95$	1,585	5.8	12,000
t	1.7	1,250	$1 \cdot 3$	960	$1 \cdot 4$	1,020	1.	[17)	$2 \cdot 1$	1, 5 20	57	11,600
5	1 -	1,360	12	930	1.4	1, 120	$1 \cdot 3$	969	1.	1,510)	$5 \cdot 2$	9, 700
6	1.3	1,36!	1.25	93.3	1.5	1, Csol	$1 \cdot 3$	$9{ }^{\text {9 }}$	$\because \cdot 11$	1,6211	15	8,300
7	1.7	1,259	$1 \cdot 20$	'1..	1.5	1,080	$1 \cdot 3$	960	- - 2	1,910	+ 95	8,700
4	1.7	1,250	$1-1$	'1."	1.9	1.1-1	$1 \cdot 3$	19%	$\therefore \square$	3.090	$5:$	9,700
\because	1.7	1,250	$1 \cdot 1$	810	1.5	1,050	$1 \cdot 3$		$3 \cdot 5$	4.200	$5 \cdot 0$	S.900
10	1 \%	1,250	$1 \cdot 1$	\$10	1.5	1.080	1-35	99.10	$3 \cdot 7$	4,600	$4 \cdot 6$	7,340
11	1.7	1,250	$1 \cdot 1$	340	1 ;	1,090	1 :	$1 \therefore$	$3 \cdot 3$	\therefore,	$4 \cdot 4$	6,600
12	17	1,250	$1 \cdot 1$	- 11	1.5	1,0, 0^{0}	$\underline{1} \cdot 3$	$\therefore י$	-	4,0)0	4	6,970
13.	1.7	1,250	115	815	1.5	1,0>0	2. 2.5	1.990	$3 \cdot 5$	4,291	54	10, 500
11	1.7	1,250	11%	815	1 ;	1.0×11	$2 \cdot 2$	1.1.	-	4,004	$5 \cdot 0$	S, 9100
1.7	1.7	1,250	$2 \cdot 1$	1,761)	1.5	1,0-1)	\because	2,070	1;	3.5011	$4 \cdot 5$	15,970
1%	1 -	1,2.50	4.f)	7,310	1 i	1,1901	$2 \cdot 3$	1.910	$3 \cdot 1$	t, (1)0)	1.1	, , ...
17	1.7	1,2.50	$5 \cdot 3$	10,100	$1 \because$	1,12:)	$2 \cdot 1$	$1,6 \geq 11$	$3 \cdot 2$	3,620	$4 \cdot 3$	6, 250
15	17	1,250	$3 \cdot 6$	- $4 \cdots$	1.6	1,154		2.010	-.	3, 260	$1 \cdot 2$	i, 930
19.	1.7	1,250	\therefore :	2,929	$1 \cdot 1$	1.161)	$2 \cdot 5$	-:1	$3 \cdot 1$	3.440	\& ',	T,311
29	1.7	1,25)	$2 \cdot 7$	2,750	1	1, (1)	\checkmark	2.900	1	3,620	\therefore -	9.8111
21.	$1 \cdot 6$	1,169	$2 \cdot 4$	2.210		1,010)	$3 \cdot 11$	\cdots	$1+$	1,0\%4	$4 \cdot 4$	$\therefore 1010$
22	1.	1,180	$\because \cdot 1$	1, 2 en	$1-$	1, (19)	,	\cdots	-	! - .	1.	7.3811
23	1.	1,1fil)	$\underline{2} \cdot 11$	1,621)	1.5	1.101)	$\because \cdot 4$	2, 920	$4 \cdot 9$	5, 920	$4 \div$	7.15\%
21.	1.	1,200	1.	1,5.11	1	! -	$\underline{-9}$	3, (1) 41		(1, 25)	$1 \cdot 5$	6,971
25	1.85	1,20\%	$1 \cdot 4$	1,5010	$1 \cdot 4$	1,1120	$\because 6$	$\therefore \therefore$	$1 \cdot 4$	is, $\mathrm{yan}^{\text {a }}$	+ 5.5	(i), (1)
26	1.	1.1..	$1 \cdot 7$	1,254)	1 ;		$2 \cdot 7$	2.850	$4 \cdot 6$	\&, 1(10)	$4 \cdot 4$	(3, \%in!
27.	1.	1,1;9)	1 ,	1,09)	1.4	1.112		- 11	-.,	-.9301)	$4 \cdot 5$	13, 970
29	1 :	1.101	1.5	1.0×11	1.4	1.1120	$2 \cdot 45$	2,32.	$4 \cdot 9$	- 5 S'M	1.45	\cdots
29	$1 \cdot 4$	1, (1)20			!	1.12) 11	$2 \cdot 1$	2,241	;-	7, 720	4.4	- .
30	1.3	! 1811			$1 \cdot 1$	1,1201		2, 070	; ;	6, 9 y (1)	$4 \cdot 5$	10,971
31.	$1 \cdot 3$	-..							1.7	7.720		

Daily Gauge Heights and Discharges of Chilliwack River near Mouth for 1913-Concluded.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.										
1	$4 \cdot 6$	7,340	$3 \cdot 1$	3,440	1.8	1,366	1.7	1,250	$2 \cdot 2$	1,910	$2 \cdot 7$	2,750
2	4.4	6,600	$3 \cdot 1$	3,440	$1 \cdot 7$	1,250	1.7	1,250	$2 \cdot 0$	1,620	$2 \cdot 6$	2,580
3	$4 \cdot 2$	5,920	$3 \cdot 0$	3,260	$2 \cdot 0$	1,620	$1 \cdot 6$	1,160	1.9	1,500	$2 \cdot .5$	2,410
4	$3 \cdot 9$	5,100	$3 \cdot 1$	3,440	$4 \cdot 9$	8,500	1.5	1,080	$2 \cdot 0$	1,620	$2 \cdot 4$	2,240
5	$4 \cdot 0$	5,369	$3 \cdot 0$	3,260	$4 \cdot 7$	7.720	1.4	1,020	$2 \cdot 2$	1,910	$2 \cdot 3$	$\therefore, 07 \mathrm{~J}$
6	$4 \cdot 4$	6,60)	-9	3,990	$4 \cdot 0$	5,360	$1 \cdot 4$	1,020	$2 \cdot 1$	1,760	$2 \cdot 2$	1,910
7	$4 \cdot 5$	8,100	$3 \cdot 0$	3,260	$3 \cdot 8$	4,840	$1 \cdot 3$	960	$2 \cdot 1$	1. 62	$2 \cdot 3$	2,076
S	$4 \cdot 6$	7,340	2.9	3, 90	$3 \cdot 4$	4,000	1.3	960	$2 \cdot 1$	1,760	$2 \cdot 3$	2,970
9	4.4	6,6	$2 \cdot 8$	2,920	$3 \cdot 1$	3,440	$1 \cdot 4$	1,020	$2 \cdot 4$	2,240	$2 \cdot 2$	1,910
11.	4.5	6,970	2.7	2,750	$2 \cdot 8$	2,920	1.5	1,080	$4 \cdot 3$	2,070	$2 \cdot 2$	1,910
11.	$4 \cdot 7$	7,720	2.8	2,920	$2 \cdot 7$	2,750	$5 \cdot 4$	10,500	$2 \cdot 2$	1,910	$2 \cdot 1$	1.760
12	$4 \cdot 5$	6,970	$2 \cdot 7$	2,750	$2 \cdot 6$	2,593	$4 \cdot 4$	6,600	$2 \cdot 1$	1,760	$2 \cdot 0$	1,620
13.	$4 \cdot 1$	5,620	$2 \cdot 6$	2,580	$2 \cdot 5$	2,410	4.9	8,500	$2 \cdot 0$	1,620	$1 \cdot 9$	1,500
14.	$3 \cdot 8$	4,840	$2 \cdot 7$	2,750	$2 \cdot 4$	2,240	$3 \cdot 9$	5, 100	1.9	1,500	$2 \cdot 0$	1,623
15	$3 \cdot 6$	4,400	$2 \cdot 5$	2,410	$2 \cdot 3$	2,070	$3 \cdot 5$	4,200	1.9	1,500	$2 \cdot 1$	1,760
16	$3 \cdot 5$	4,200	$2 \cdot 2$	1,910	$2 \cdot 2$	1,910	$3 \cdot 2$	3,620	$3 \cdot 7$	4,600	1.8	1,360
17	$3 \cdot 4$	4,000	$2 \cdot 3$	2,070	$2 \cdot 4$	2,240	$3 \cdot 0$	3,260	$3 \cdot 2$	3,620	1.9	1,500
18	$3 \cdot 6$	4,400	$2 \cdot 3$	2,070	$2 \cdot 7$	2,750	$2 \cdot 8$	2,920	$3 \cdot 8$	2,920	1.8	1,360
19.	$4 \cdot 1$	5,620	$2 \cdot 2$	1,910	$2 \cdot 1$	1,760	$2 \cdot 7$	2,750	$2 \cdot 7$	2,750	1.7	1,250
20.	$4 \cdot 3$	6,250	$2 \cdot 1$	1,760	$2 \cdot 1$	1,760	$2 \cdot 6$	2,580	$2 \cdot 5$	2,410	$1 \cdot 6$	1,160
21.	$4 \cdot 6$	7,340	1.9	1,500	$2 \cdot 2$	1,910	$2 \cdot 7$	2,750	$2 \cdot 4$	2.240	1.5	1,080
22.	$4 \cdot 5$	6,970	1.8	1,360	$2 \cdot 2$	1,910	$2 \cdot 6$	2,580	$2 \cdot 3$	2,070	$1 \cdot 6$	1,160
23	$4 \cdot 4$	6,600	1.7	1,250	$2 \cdot 1$	1,760	$2 \cdot 7$	2,750	$2 \cdot 2$	1,910	1.5	1,080
24.	$4 \cdot 2$	5,920	$1 \cdot 9$	1,500	$2 \cdot 1$	1,760	$3 \cdot 0$	2,070	$4 \cdot 0$	5,360	$1 \cdot 4$	1,020
25.	$4 \cdot 0$	5,360	$2 \cdot 0$	1,620	$2 \cdot 0$	1,620	$2 \cdot 7$	2,750	$3 \cdot 7$	4,600	$1 \cdot 5$	1,050
26.	$3 \cdot 9$	5,100	1.9	1,500	$1 \cdot 9$	1,500	$2 \cdot 5$	2,410	$3 \cdot 3$	3,800	$1 \cdot 4$	1,020
27.	$3 \cdot 7$	4,600	1.8	1,360	1.8	1,360	$2 \cdot 4$	2,240	$3 \cdot 31$	3,800	$1 \cdot 4$	1,020
28.	$3 \cdot 5$	4,200	$2 \cdot 0$	1,620	$2 \cdot 1$	1,760	$2 \cdot 3$	2,070	$3 \cdot 0$	$3 \cdot 260$	1.5	1,080
29	$3 \cdot 4$	4,000	1.9	1,500	1.9	1,500	$2 \cdot 2$	1,910	$3 \cdot 0$	3,260	$1 \cdot 4$	1,020
30.	$3 \cdot 3$	3,800	$2 \cdot 0$	1,620	1.8	1,360	$2 \cdot 1$	1,760	$2 \cdot 9$	3,090	$1 \cdot 3$	960
31.	$3 \cdot 2$	3,620	$1 \cdot 9$	1,500			$2 \cdot 1$	1,760			$1 \cdot 3$	960

COQUIHALLA RIVER.

Location. - Near mouth of river and town of Hope, in section 10, township 5 , range 26 , west of 6 th meridian.

Records Available.-Continuous records since November 16, 1911.
Winter Conditions.-Open water at gauging station all year.
Gauge.-Chain gauge on highway bridge; gatuge readings two or three times a week. Some trouble with gauge chain stretching.

Channel.-Bottom rocky and streams rather shallow. Water swift at the higher stages.

Discharge Measurements.-Eleven meter measurements during 1912 and 1913 show some discrepancies, and do not cover highest stages.

Accuracy.-Records only moderately accurate on account of infrequency of gave readings and a mumber of changes in the length of the chain.

COQUIHALLA IRIVEIR.

C'oquihalla river has its source in the pass betwen the Coquihalla and ('oldwater rivers, at an elevation of 3,000 feet, and discharges into the Fraser river near Hope at an elevation of 120 feet. It is part of the liraser drainage; the drainage area, as measured from a Dominion sectional map, seale 3 miles to an inch, is 360 square miles. The amual precipitation varies from 50 inches
at the mouth to about 80 inches at the headwaters. At Hope the winters are quite mild, and the stream does not freeze over. In the higher altitudes the winters are much more severe.

The following tributaries enter from the left going upstream; the Kawkaw, Ladner, and Boston Bar creeks; Nicolum creck and Pierra river enter from the right.

Just above the mouth of the Nicolum, and about 6 miles from the Fraser is the site of a proposed power development, about $11 / 2$ acres in extent. The river flows through a gorge with preciptous rocky walls from 30 to 70 feet in width, and about 150 feet in height. By constructing a dam at the head of the gorge, and a tunnel through the mountains for about 1,000 feet to the power site, from 100 to 125 feet head could be obtained. Storage facilities, however, are undefined, as yet and may be limited by the railroad construction in the valley. A few hundred feet below the mouth of the Nicolum, there is another small canyon and falls; but to use this section of the river in conjunction with the other would be very expensive.

The river station on the Coquihalla was established Aprill 10,1912 , by C. G. Cline. It is located at the upper highway bridge, a mile from the mouth. A
 side, and its datum is referred to three bench-marks. C'able measurements are made from the down stream side of the bridge. The control is good, the banks are high, the current fairly uniform, and the stream has a permanent rocky channel. In the freshet season the water might flow in two channels, but entirely under the bridge.

Discharge ?Measurements of Coquihalla River near Mouth 1911, 1912 and 1913.

Monthly Discharge of Coquihalla River near Mouth for 1913.

(Drainage area, 360 square miles.)

	Montr.	Discharge in Second-Feet.				Run-Off.	
		Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
January		1,580	320	557	1.55	1.79	34,200
February		2,400	$\because 59$	592	1.64	1.71	32,900
March.		560	270			$1 \cdot 25$	24,000
April		2,310	230	1,195	3.32	$3 \cdot 70$	70,800
May.		6,070	890	3,330	9. 25	$10 \cdot 66$	20,500
June		7.040	2,480	3,961	11.00	$12 \cdot 27$	203,500
July		2,480	850	1,705	4.74	$5 \cdot 46$	12,500
August		970	330	580	1.6.3	1.88	35,700
s'eptember		3,110	320	1,000	2.78	3. 10	59,509
October		5,693	320	1,665	$4 \cdot 62$	5.33	102,000
November		2,310 1,240	770 470	1,243	3.45 2.00	3.85 2.31	73,800 44,200
December.		1,240	470	719	$2 \cdot 00$	$2 \cdot 31$	44,200
The year		7,040	230	1,412	$3 \cdot 92$	53.31	1,022,000

Note.-Accuracy "A", "B" and "C".

Daily (iuage Heights and Discharges of Coquihalla River near Mouth for 1913.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Fees.	Sec. ft .	Feet.	Sec.-ft.	Feef.	Sec.-ft.	Feet.	Sec.-ft.
1	1-1	370	$1 \cdot 0$	320	$1 \cdot 0$	320		270		1,050		6,370
$\stackrel{1}{2}$		370		320		320	(). 8	240		970	$5 \cdot 6$	7,040
3		370	$1 \cdot 0$	320	$1 \cdot 0$	320		240	1.9	s! 9	$5 \cdot 5$	6,840
4	$1 \cdot 1$	370		300		320	0.75	230		900		5. 640
5		350		280	$1 \cdot 0$	320		230		910	$4 \cdot 25$	4.450
6	$1 \cdot 0$	320	0.9	279	$1 \cdot 05$	350		240	1.95	$\begin{array}{r}930 \\ \hline 130\end{array}$		4.500
\%	1.2	370 420	$1 \cdot 1$	320 370	$1 \cdot 4$	440 530	0.8	240 310	2.9	1,430 2,000	$4 \cdot 3$	4,550 4,350
9	1.05	350		400		550		$39)$		3,000	$4 \cdot 1$	4,160
10		350		440	$1 \cdot 45$	560	$1 \cdot 3$	470	$4 \cdot 11$	3,960	$4 \cdot 3$	4,550
11	$1 \cdot 15$	350	$1 \cdot 3$	470	$1 \cdot 3$	470		910		3,590		4,350
12		439	0.9	270		470	$2 \cdot 4$	1,340		3,210	$4 \cdot 1$	4,160
13		510	$0 \cdot 85$	250	1.3	470		1,370	$3 \cdot 4$	2,840		3,690
14	1.5	590		310		420	$2 \cdot 45$	1,400		2,730		3,220
15		640	1.75	770	$1 \cdot 1$	370	$2 \cdot 45$	1,400		2,620	$3 \cdot 35$	2.750
16	$1 \cdot 65$	690		1,580		450		1.600		2,480		3,110
17		750	$3 \cdot 15$	2,400	1.4	530		1, (110)	$3 \cdot 1$	2,310		3,470
18	1.8	810		1,660	1.4	530		1,980		2.440		3,830
19		1.1.50	1.95	- 930		480		2,180	$3 \cdot 3$	2,660		4.190
20		1,280		780		430	$3 \cdot 1$	2,310		3,360	$4 \cdot 3$	4,550
21	$2 \cdot 6$	1,580	$1 \cdot 55$			370		2,316		4,060	$3 \cdot 7$	
22		1,100		560	1.1	370	$3 \cdot 1$	2,310		4.760		3,210
23	1-5.5	630		480		340		2,010	4.75	5,410		3,030
24	$1 \cdot 15$	40^{0}	$1 \cdot 15$	401	$1 \cdot 0$	320		1.760)	$4 \cdot 85$	5.600		2,840
25	$1 \cdot 15$	402		400		320	$2 \cdot 4$	1.340	4.85	5,600	$3 \cdot 3$	2.660
26		4.11		$4(1)$	$1 \cdot 0$	320	$2 \cdot 6$	1,580	$5 \cdot 1$	6,970		2,780
27	$1 \cdot 15$	4111	$1 \cdot 15$	4011	$0 \cdot 95$	300	$2 \cdot 7$	1,710		5,820		2,900
$2 \sim$		410		360	0.9	270	$2 \cdot 4$	1.340		5,570	$3 \cdot 5$	3,020
29.	1.2	420				289		1,240		5,320		2,750
30	1.2	420				290	$2 \cdot 2$	1,150	4.3i	5,030	$3 \cdot 2$	2.480
31		370			(1). 9.5	300				5,700		

SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of Coquihalla River near Mouth for 1913-Concluded.

('O)(UITLAM RIVER
Location.-Discharge measured at lower end of tumel to lake Buntzen. in township 5 , range 6 , west of 7 th meridian.

Records Available.-Average run-off from 1906 to 1913.
Winter Conditions.-Open water.
Gauge.-Staff gauge for weir measurments.
Channel-Artificial.
Discharge Weasurements. Weir measuremente made be engineers of V'anrouver Power Company.

('OC.U'ITLAM IRIVERK。

Coquitlam river rises in Disappointment lake near the north hommary of the Railway Belt in township 7 , range 6 , west of the bith meridian. ('opuitlam lake is on the river about 8 miles farther south, in township 5 , range 6 . It is at an elevation of 430 feet, and has an area of 2,300 acres at low water. Below Coquitlam lake the river flows south for about 10 miles and discharges into Fraser river near the mouth of Pitt river in township 38 E.C.M. Gold creek enters the river from the east below the lake and Viola creek empties into the lake itself, also from the east. The drainage area above the outlet of the lake is 105 square miles.

Fraser River at Hope, B.C. Gauge painted on Rock face.
Coquitlam watershed is in the Coast district. The mean annual precipitation near the mouth is 60 inches. There is very little snow at the mouth, and the river rarely freezes over there. At the lake, however, the snowfall is very heavy, and the lake is frozen for several months. There the precipitation is about 140 inches, and it is probably more in the higher altitudes. Snow remains on the mountain peaks practically all summer.

The Vancouver Power Company uses the water of Coquitlam river for developing power for Vancouver, New Westminster, and vicinity. The city of New Westminster gets its water supply from Cocquitlam lake, and convers it by pipes to the city. The amount of water the city uses does not seriously

Fraser River at Hope, 13.C. Looking upstream fromi Gauge.
affect the supply for power, but it is necessary, above all things, to keep the water clean and pure and to provide for a continuous flow under all circumstances. These conditions made it necessary to establish a Government reserve around the lake and its headwaters, and to have a Government inspecting engineer on the ground during the construction of the works for the power company.

In developing power the water is diverted from Coquitlam lake to lake Buntzen, and from there it is carried in pressure pipes to the power-house on the North Arm of Burrard inlet. Water is stored in Coquitlam lake by means of a large hydraulic-fill earth dam which is capable of raising the level of the lake 50 feet. The connection between the two lakes is made by a tumnel 12,775 fect long which passes under a mountain about 4,000 feet high. Lake Buntzen makes a good equalizing reservoir, having an area of 500 acres. It is 400 feet above sea-level. At its outlet there is a concrete dam $5 \pm$ feet high and 360 feet long. The pipelines from the dam to the power-house are 1,800 feet long. The upper 800 feet of each line is a wooden stave pipe with a diameter of 54 inches. and the lower 1,000 feet is of riveted steel construction, varying in diameter from 48 inches. The power-house is at sea-level, and is built of stone with a concrete foundation. On account of the high head of 400 feet, it is possible to use the tangential type of water wheel. Pelton and Doble wheels of different capacities are used, and are direct connected to their generators.

A gauging station was maintained for a few months on the Coquitlam river just above the lake, and another on Viola creek. It was the intention to combine the results obtained at these two stations, which should give very nearly the amount of water available for power, as the other streams which flow into the lake would probably provide enough water for New Westminster. The stations were maintained as long as there was a gauge reader available. The flow is now determined by a weir which the Vancouver Power Company has installed at the outlet of the tunnel. This station does not take account of the overflow over the storage dam at the lower end of lake Coquitlam, but it is not expected that there will be much overflow except possibly during the summer freshet.

Below the dam, the stream will be practically dry most of the year, but the How of Cold creek, which enters about a mile below the dam, will pohahly supply sufficient water for all necessary purposes on the lower river. A gauging station is being maintained on Gold creek to measure its flow.

Monthly Discharge of Coquitlam River at outlet of Vancouver Power Company's 'Tunnel for 1913.

Location. - At Hope in section 16, township 5, range 26, west of 6 th meridian. Records Available.-Continuous records since March 5, 1912.
Winter Conditions.-Open water practically all year.
Gauge.-Gauge painted on rock bluff, graduated to feet, tenths by estimation -Gauge readings daily.

Channel.-Permanent chamel, deep water.
Discharge Measurements.-Mainly boat measurements, of only moderate accuracy. One float measurement at high water. Six measurements in all during 1912 and 1913 covering practically all stages
2.) 7

Accuracy.-Fair only. The completion of the Kettle Valley Railroad bridge will permit of better measurement being taken during 1914 .

Fraser RIVER.
Fraser river has its source in the Yellowhead pass at an elevation of 3,710 feet, and after flowing some 700 miles in a general southwesterly direction, discharges into the Pacific ocean (strait of Georgia) near New Westminster. Of its length, the lower 175 miles is within the Railway Belt. The important, tributaries within the Belt are Pitt river, Stave river, Sumas river, Harrison river, Nahatlatch (or Salmon) river, Silver-Hope creek, Coquiballa river, Stein creek, and Thompson river, the last named being the largest confluent. Outside the Railway Belt there are Bridge, Chilcotin, Quesnel, Blackwater, Nechako, and Willow rivers. Near Fort George the North Fork and South Fork unite. Bear river is a tributary of the South Fork.

The drainage area of the Fraser river is about 90,000 square miles. The report of the water powers of Canada, issued by the Commission of Conservation, 1911, gives it as 91,700 square miles. The said report also gives an interesting article on the Fraser river in the chapter on British Columbia.

The drainage area of the Fraser river above Lytton (i.e., above the mouth of Thompson river) is 63,000 square miles.

The dranage area of the Fraser above the gauging station at Hope (including the Coquihalla river) is 85,600 square miles.

The Fraser is important for fishing, navigation, and lumbering. There are some millions of latent horse-power in the river, particularly in the Fraser river canyon, but it is not likely that the river will be harnessed in the near future. A company now has a project for developing power at Hell's Gate, near Y'ale, where the river runs through a narrow canyon, and the difference between extreme high water and low water is about 100 feet.

Fraser river is the largest stream lying wholly in British Columbia, and it has played a very important part in the development of the province. It was the discovery of gold in the bed of the Fraser river that brought large numbers of men into the country; and it was the gradual movement of the gold seekers up the valley that opened up the country and led to the building of roads and bridges. When the Canadian Pacific rallway was built it followed the Fraser for 150 miles, and the Thompson, a tributary of the Fraser, for as many more. The Canadian Northern Pacific railway follows the Fraser and Thompson to Kamloops, goes up the North Thompson, strikes across the divide to the upper Fraser again, and follows it to the Vellowhead pass. The Grand Trunk Pacifie follows the upper Fraser river from the Yellowhead pass for 390 miles or more. Since the railways are the most important factors in developing a country rich in natural resources, the valleys of the Fraser river and its tributaries will necessarily continue to be of great importance.

Probably the most important industry comected with the Fraser river is the fishing. Falmon of rarious kinds come in from the salt water in countless numbers in the fall and swarm up the Fraser river, heading for the spawning grounds on the smaller rivers and creeks. (ireat numbers of them are caught near the mouth of the Fraser, and large cameries are situated there; and salmon are caught on all parts of the Fraser and on all the streams that flow into it In the winter, dried fish is the staple diet of the Fraser River Indians.

British Columbia is essentially a mountamous country, and the watershed of the Fraser follows the general rule. As a result, the amount of land suitable for agriculture is relatively small. It is found mostly in small flats and henches along the Fraser and its tributaries: and sometimes a valley will widen out and give a larger expanse of good land, as in the ease of the Nicola valley, where there are several townships of good land in a hlock. Nany of the small flats

SESSIONAL PAPER No. $25 f$

contain excellent land, and some of them in the dry belt are well sheltered and make splendid fruit land. Probably the richest land in the whole province is the delta land near the mouth of the Fraser river, of which Lulu island is a grood example.

In the days of the gold rush, before the Canadian Pacifie railway was huilt, steamers ran up the Fraser as far as Jale. which is 100 miles from the coast During the construction of the Canadian Northern, supplies were distributed hy steamer as far as Yale. But as a rule navigation on the Fraser is now confineil to the 50 -mile stretch from Chilliwack to the mouth. This part of the stream is tidal, and river steamers make reqular trips hetween New Westminster and Chilliwack. calling at many points on hoth sides of the river on the way. But the construction of railwas and electric lines is rendering the river transontation less important than formerly.

On the other hand, the importance of the Fraser river as a port for ocean shipping is increasing. In the early days. New 11 estmincter was the only port on the mainland, and there was sufficient water over the har for the ships of thes days. But with the coming of the C'analian Parific rallway to Burrard intet and the increase in the dranght of ocean-going vesels, the Fraser river became of secondary importance. Now, however, jettere are heing huilt at the month of the river so that the stream will keep its chamel somued dean, and dredging is being done where necesary. In Burrad inlet. most of the suitable waterfront is in use, and all of it is hed at high priees: while along the Fraser river there ate miles of good waterfront lying idle. New Westminster is starting on an extensive hathour development programme. and intends to improve the waterfont along the eity and to build docks on Amacis istand. 'The Canadian Northem railwat is plaming a town at Port Mann where for two or more mile there is deep water close to the shore. An industrial city seems to be starting around the Canadian Parific railway yards at Corquitlam, and hartour survers art being made abong the Fraser and Pitt rivers. It is probahle the Fraser will develon into a fresh-water harbour of considerable importance.

Lumbering is one of the chief industries of British Columbia, and there is a good deal of timber in the Fraser river watershed. The best timber is near the contat. Where fir and cedar grow to immense sizes. but mos of the watershed is eovered with timber of some kind. In the dry helt the lower hemehes are often hare but there are wemerally trees on the hills. In the monntams there are trees on the lower hills, though the higher peake may rise above the timberline. In the Cariboo distriet, there hat heen eut only what timber was required for lowal use. The same is practically true of the dry belt. But at the coast, in addition to supplying the large local demand, a great deal of timber is shipped he rail to the prairie, and by water to Australia, South America, and the Orient." The longest sizes of cedar poles are sent by rail even as far as Ontario. The logs are floated to na viquhle water, where they are made into mafle and towed to the mills There are exeveral mills on the Fraser riser, and one of them is said to be the larees in the world; but agood deal of timber they иヵー is cut out side the Fraser watershed. Up tos the pre-ent the timber which has bern wht is that in the hower partof the valleys, where it has been within easy reach of the water. But before longe it will be nemestary to haid logeing rallmath the the headwaters and the catting of the timber there, umless done under careful supervision, with provi-ion for reforestation, will affect the regimen of the streams.

There are no very good power sites on the Fraser river inside the Railway Bolt, thengh many of its tribmaries have exerellent ones. There are mo balls on the river and no very heavy rapids. There are places in the canyon where 30 or 40 feed of head cond be ohtained be meant of a dam. But there is a railroal on each side of the riser, not far above the high-water line as it is at pre-me amb it would be found very diffecult to take caro of the heavy flood discharee in the narrow canyon.
$2.5 \mathrm{r}-7 \frac{1}{2}$

Out ide the Railway Belt, there is not much better chance of developing power on the Fraser. Between Lillooet and Soda creek, a distance of some 120 miles, there is a drop of about 800 feet, but there is no very heary fall at any one point. From Soda creek to Fort Ceorge and From Fort George to Tete Jame (ache the river can be navigated at certain seasons, though there are a few places where power might be developed by means of a dam. The upper stretch was used only during the construction of the Cirand Trunk Pacific railway, and now that the railway has been completed the boats will probably not be used much. Between Fort Creorge and soda Creek, however, boats have heen running for a number of years. The completion of the Grand Trunk Pacific railway will probably considerably lessen the traffic, but the route will be used until the completion of the section of the Pacific Cireat Lastern railway between Lillonet and fort (ieorge. Though the completion of these railways will probahly result in the cessation of navigation on the river, the presence of the railways along the banks of the river will be a great hindrance to the development of power in most places. The difficulty of handling the hig floods and the necessity of providing proper passes for the salmon and other fish will also prove deterrent factors. British Columbia is so well supplied with good development sites with moderate flows under relatively high heads that it is very doubtful if low heard propositions such as the Fraser presents, would be economically feasible.

The Fraser river empties into the gulf of Ceorgia, and at the mouth it rises amd falls with the tides; and this tidal influence extends up the river with diminishing effect until it becomes almost negligible at Agasiza, 70 miles from the mouth. The tide rises several feet in Pitt river and Pitt lake. Hence during ordinary stages of the Fraser, there is quite a current upstream past New Westminster when the tide is rising. This is of importance for natigation, and for water supply and sewage disposal.

At New Westminster the Fraser presents quite an imposing appearance. heing more than half a mile in width and, in the main chamel, about 40 feet deep). In addition to the ordinary flow of the stream there is the ehb) and flow of the tidal water. Near Hope, 90 miles from the mouth, the river varies from 700 to 1,000 feet in width, is 40 feet deep, in places, at low water, and at high water rises 20 feet above the low-water mark. The maximum discharge in 1913 was 450,000 , the minimum 13,400, and the mean for the year about 92.000 cubic feet per second. At Yale, 100 miles from the mouth, the canyon begins, and the river is confined between solid rock walls. In many places it is only two or three hundred feet wide, and varies in depth at low water from 20 to 80 feet. During the flood it sometimes rises in certain confined parts of the canyon ats much as 100 feet above the low-water mark. This canyon extends for about 30 miles, and is awe-inspring in its rugged grandeur. Above the canyon the hanks are still high, but the rock is not so much in evidence. At Iytton, 150 miles from the mouth, the Thompson river enters, and above the mouth of the Thompson, the Fraser is from 300 to 700 feet wide, 15 feet deep at low water and at high water rises 25 feet above the low-water mark. The maximum discharge for $1913,182,000$, the minimum 1,500, and the mean 56,750 cubic feet per second.

The Fraser river is about 700 miles long and has a drainage area of 90,000 square miles. It rises near the summit of the Yellowhead pass, which hats an altitude of 3,710 feet above the sea-lered. Near Tete Jame ('ache, so miles from the summit, the altitude is 2,400 feet. Between that point and Fort George the stream is navigable during high water. The altitude at this later point is $1,90(0$ - a descent of $5 ⿹ 0$) feet in about 200 miles. Near Fort (ieorge the Fraser river turns south. Steamers make regular trips on the 120 -mile stret ch betwern Fort (ieorge and soda creek. At Lillooet, 130) miles farther south, the elevation is (ifio) feet. Tear Lytton, 50 miles from Lillooet, the mean elevation is about 450 feet. Yale is 53 miles below Lytton, and the mean elevation of the water
at the average height is 170 feet. At Hope, 13 miles south of Yale, the Fraser begins to turn in a westerly direction; its elevation is about 125 fcet. From Agassiz, 19 miles below Hope the course is almost directly West to the gulf of Georgia. The elevation of the river at Agassiz is about 60 feet. For the last 50 miles from Chilliwack to the mouth of the stream is affected more or less by the tides.

There are at present two gauging stations on the Fraser river. One is at Lytton, just above the mouth of the Thompson river, and is to give the flow of the upper Fraser river. The other was established at Hope, and gives practically the whole flow of the stream. The aim was to have the station as near the mouth as possible and still avoid all tidal influences.

The gauging station at Hope was established on MIarch 1, 1912, and continuous records have been kept ever since. It is below the mouth of the Coquihalla river. The original gauge was painted on the smooth face of the rocky point where the Kettle Valley Railway bridge has been built. A vertical staff gauge has since been attached to the east face of the east pier. These gauges give the same reading and are referred to bench-marks on both sides of the river.

Before the construction of the bridge, it was quite difficult to get good meter measurements at the higher stages. It was not considered advisable to erect an expensive cable station, particularly as the construction of the bridge might render it unnecessary. At the lower stages a boat could be anchored in the stream and its position determined by triangulation from the shore. At higher stages a motor-boat was used for several stages but it was sometimes difficult to get the anchor to hold the boat or the section, even with the help of the engine. An attempt to put in permanent anchors and buoys failed on account of the swift current. Two measurements were made from the ferry cable at Yale, 10 miles farther up the river, but one float measurement was made at Hope. Taken together, the measurements gave a fair curve, but now that the bridge has been built probably better results can be obtained in 1914. It is quite possible that the construation of the bride piers mas have materially affected the rating of the gauge, but that will be determined during 1914, and a new curve constructed if necessary.

The gauging station near Lytton is at the ferry crossing, about 2 miles from the town. The gauge is painted on an irregular rock point. Neter measurements are made from the ferry beat. Which is hed aqumst the current be the ferry cable and kept in its proper position as nearly ar perihle hy the steering oar. The distance from the shore is measured by triangulation.

In 1914 it is proposed to establish a new station at the Pacific Great Eastern Rathaty treatle. near Lillooet. This station is to be used in comection with the one on the Thompson river at spences Bridge for estimating the Fraser river floods.

Discharge Measurements of Fraser River near Hope, 1912-13.

Monthly Discharge of Fraser River near Hope for 1912.
(Drainage area, 85,600 square miles.)

Montir.	Discharge in Second-Feet.				Rundof.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
March	19,500	14,200	16,150	$0 \cdot 19$	$0 \cdot 22$	990,000
April.	69,500	19,500	40,720	0.45	0.54	2,420,000
May	217,600	68,000	150,000	1.75	$2 \cdot 62$	9,223,000
June.	246,000	139,200	186,000	$2 \cdot 17$	$2 \cdot 42$	11,070,000
July.	191,800	114,000	136,000	1.59	1.83	8,362,000
August	123,800	97,000	113,000	$1 \cdot 32$	1.52	6,948,000
September	91,000	52,000	70,170	$0 \cdot 80$	0.92	4,177,000
October...	68,000	44,000	53,000	$0 \cdot 63$	$0 \cdot 73$	3,308,000
November	45,000	33,000	39,300	0.46	0.51	2,339,000
December	32,000	24,000	27,800	0.32	$0 \cdot 37$	1,709,000

Monthly Discharge of Fraser River near Hope for 1913.
(Drainage area, 85,600 square miles.)

Month.	Discharge in Second-Feet.				Run-off.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage агеа.	Total in acre-feet.
January	25,000	13,406	17,800	$0 \cdot 21$	0.24	1,093,000
February	44,060	18,030	25,3v0	$0 \cdot 30$	$0 \cdot 31$	1,401,00u
March	$24.00)$	17,400	19,0n0	0.22	$0 \cdot 26$	1,169,000
April.	65,500	17.400	34.400	$0 \cdot 40$	$0 \cdot 45$	2,040,000
May.	162,000	$34,0^{3}$	82,300	0.96	$1 \cdot 11$	5,053,0(0
June	450,000	173,000	306,800	$3 \cdot 58$	$3 \cdot 99$	18,227,000
July...	¢ $59,4 \cup 0$	167, 000	201,000	$2 \cdot 35$	$4 \cdot 71$	12,355,000
August....	203,000	153,006	177,000	$2 \cdot 07$	$2 \cdot 39$	10,910,000
September	160,000	80,000	113,900	1.33	1.48	6,767,000
October...	78,000	51,000	60,3v0	$0 \cdot 70$	0.81	3,710,000
November	56,000	29,000	37,200	$0 \cdot 43$	(1.48	2,210,000
December			27,000	$0 \cdot 32$	0.37	11,657,000
The jear....	450,000	13,400	92,120	1.07	14.60	66,592,000

[^3]SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of Fraser River near Hope for 1912.

Daily Gauge Heights and Discharges of Fraser River near Hope, for 1912-('oncluded.

SESSIONAL PAPER No. $25 f$

Daily Gauge Heights and Discharges of Fraser River near Hope for 1913.

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Fraser River near Hope
for 1913 -Concluded.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height.	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	Dis- charge	Gauge Height.	Discharge	Gauge Height.	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$
	Feet.	Sec.ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.
1.	26.4	289,400	22.2	167,000	21.7	157,000	15.9	78,000	13.8	56,000	1	27,000
$\begin{aligned} & 2 . \\ & 3 . \end{aligned}$	26.2 25.8	281,200 267,200	${ }_{21}^{21.7}$	157,000 153,000	$21 \cdot 3$	150,000 142,000	$15 \cdot 7$ 15.5	77,000	13.5 13.3	53,500 50,000		27,000
4	25.7	263, 900	21.5	153,000	21.9	160,000	15.3	72,500	13.1	48,000		27,000
5	$25 \cdot 3$	250,200	21.6	155,000	21.2	148,000	15.1	70,000	13.1	48,000		27,000
	24.9	237,200	21.7	157,000	20.4	135,000	14.0	58,000	13.0	47,000		27,000
7	24.3	220,000	21.8	159,000	29.8	125,000	13.8	56,000	12.0	37,000		27,061)
8	24.0	212,000	21.8	159,000	19.5	121,000	13.7	54,500	12.0	37,000		27.000
9	23.7	203,000	21.9	160,000	19.2	117,000	13.5	52,000	12.0	37,000		27.006)
10	$23 \cdot 7$	203,000	22.9	182,000	18.5	109,000	13.4	51,000	11.9	36,000		27,0(1)
11	$24 \cdot 0$	212,000	23.7	203,000	18.2	105,000	13.5	52,000	11.8	35,000		27, (KH)
12	23.7	203,000	23.7	203,000	17.7	99,000	14.0	58,000	11.8	35,000		27,000
13.	23.3	192,000	23.4	194,000	17.4	96,000	14.3	61,000	11.8	35,000		27.000
15.	$22 \cdot 8$	180,000	23.2	189,000	17.8	100,500	$13 \cdot 8$	56,000	11.7	34,000		27,000
16.	22.6	175,000	23.0	184,000	17.5	97,000	13.8	56,000	12.5	42,000		27.000
17	$22 \cdot 3$	170,000	22.9	182,000	17.7	99,000	14.0	58,000	12.0	37,000		27,000
19	22.3	170,000	23.1	187,000	18.2	105, 000	14.0	58,000	11.9	36,000		27,000
20.	$22 \cdot 3$	170,000	$23 \cdot 2$	189,000	19.3	118,000	13.9	57,000	11.9	36,000		27.0111
21	$22 \cdot 4$	172,000	$23 \cdot 3$	192,000	20.7	139,000	13.8	56,000	11.9	36,000		27,000
22	$22 \cdot 4$	172,000	23.4	194,000	20.3	133,000	13.8	56,000	11.5	32,000		27.000
23.	$22 \cdot 6$	175,000	23.4	194,000	19.0	114,000	13.9	57,000	11.4	31,000		27.0019
24	22.8	180,000	$23 \cdot 3$	192,000	18.1	104,000	14.0	58,000	11.3	30,000		27.004
	23.2	189,000	$23 \cdot 1$	187,000	17.8	100,500	14	58,000	11	30,000		$27.0(\mathrm{H})$
26	23.5	197,000	22.8	180,000	17.5	97,000	14.2	60,000	11.2	29,000		27,001
27	23.2	189,000	22.7	177,000	17.2	93,500	14.8	66,500	11.2	29,000		27.001
28	23.2	189,000	22.5	173,000	16.8	88,500	14.7	65, 500	11.2	29,000		27,000
29	23.0 22.5	184,000 173,000	$22 \cdot 3$ 22.2	${ }_{167}^{170,000}$	16.4 16.0	84,000 80,000	14.2 13.9	60,000 57 57000	$11 \cdot 3$	30,000 30,000		27,000
31.	22.2	167,000	22.1	164,000			13.9	57,000				$27,(0) 11$

${ }^{1}$ Estimated.
GOLD CREEK.
Location.-Near the mouth of creck in section 36, township 39, west of Coast meridian.

Records Available.-Weir measurements two or three times a week beginning July 26, 1910. Regular gauge readings from October 26, 1912, to November 30, 1913.

Winter Conditions.-Open water all year.
Gauge.-Staff gauge nailed to tree. Gauge readings daily.
Channel.-Rocky and steep, water swift at higher stages.
Discharge Measurements.-One meter measurement in 1912 and three in 1913; do not agree very well.

Accuracy.-Only fairly accurate.

GOLD CREEK.

Gold creck rises in the mountains east of lake Coquitlam at an elevation of 2,000 feet or more, and discharges into Coquitlam river below Coquitlam lake at an elevation of about 400 feet. It is part of the Fraser drainage.

The mean annual precipitation in the Cold creek watershed is probably 140 inches or more. In the winter there is a snowfall of something like 6 feet. This probably increases in the higher altitudes. Near the mouth it is not very cold, and open water conditions obtain at the gauging station. In the higher altitudes the winters are more severe.

Float measurements were taken three or four times a week by Mr. R. A. Stronach during his inspection of the construction work at lake Coquitlam. These records are continuous from July 26, 1910, to October 20, 1912. On October 26, a regular gauging station was established. The records were kept until November 30, 1913. All these measurements were taken near the mouth of the creek. The purpose is to show, if possible, that there is sufficient flow in Gold creek to satisfy all the ordinary demands of the riparian owners on the Coquitlam river below the dam. If this is found to be the case there will be no necessity for the Vancouver Power Company to allow any water to pass through the dam at lake Coquitlam, and the total flow can he stored for use in the power plant.

Discharge Meastrements of Crold ('reek at 1 mile from Mouth, for 1912-13.

	Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
Oct.	1912.	C. G. Cline.	1,046	Feet.34	Sq. ft.47	Ft. per sec.$\because 6$	Feet.	Sec.-ft.
	26						$3 \cdot 70$	124.0
	1913.							
June	11.	C. G. Cline.....	1.144	9	4	$2 \cdot 5$	$\therefore \cdot 5$	$10^{-7} \cdot 0$
July	18.	K. G. Chisholm	1,055	32	4	$\because \cdot 16$	3.45 3.10	$119 \cdot 0$
Oct.	17.	H. J. E. Keys.....	1,057	35	为	\because	$3 \cdot 10$	$53 \cdot 7$

Monthly Discharge of Gold Creek at 1 mile from mouth for 1913.

		Discharge in Second-Feet.			Run-off.
	Mo.n.	Maximum.	Minimum.	Mean.	Total in acre-feet.
January.		96	1	48.8	3,000
February		390	に	$62 \cdot 1$	3,450
March...		$\because 1.1$	is	57.7	3,550
April.		142	\cdots	91.5	5,450
May.		245	33	$130 \cdot 0$	8,009
June.		170	96	$123 \cdot 2$	7,320
July.		163	ㄹ	$84 \cdot 3$	5,180
August		112	9	$24 \cdot 1$	1,480
September		- 111	3	$40 \cdot 5$	2,410
October...		\therefore -	9	63.5	3,900
November		530	21	117.9	7,020

Note.-Accuracy "C" and "D".

Daily Gauge Heights and Discharges of Gold Creek for 1913.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height	I) charge	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge
	Feet.	Sec.-ft.	Feet.	seen-ft.	Feet.	Sec.ft.	Feet.	Sere -ft.	Feet.	Sec.-ft.	Fect.	Sec.-ft.
1.	$3 \cdot 45$	96	$2 \cdot 85$	29	$2 \cdot 70$	18	2.90	33	$3 \cdot 10$	54	$3 \cdot 85$	149
2	$3 \cdot 40$	90	$2 \cdot 83$	27	2.70	18	$2 \cdot 80$	25	$3 \cdot 05$	48	4.00	171
3	$3 \cdot 38$	88	$2 \cdot 82$	26	$2 \cdot 80$	25	$2 \cdot 90$	33	3.05	48	3.95	163
4	$3 \cdot 35$	-t	$2 \cdot 81$	25	$2 \cdot 90$	33	3.111	42	$3 \cdot 00$	42	$3 \cdot 75$	135
5.	$3 \cdot 00$	42	2.79	24	$3 \cdot 10$	54	$3 \cdot 111$	54	$2 \cdot 90$	3.3	3.5.5	110.
6	-50	9	$2 \cdot 5$	23	$3 \cdot 20$	0 9,	$3 \cdot 2 n$	66	$3 \cdot 15$	8.10	$3 \cdot 60$	11.5
7	$2 \cdot 48$	8	$2 \cdot 76$	22	$3 \cdot 30$	「	$3 \cdot 20$	66	$3 \cdot 35$	84	$3 \cdot 75$	135
8	$2 \cdot 30$	5	$2 \cdot 74$	21	$3 \cdot 35$	it	$3 \cdot 30$	is	$3 \cdot 75$	135	$3 \cdot 50$	142
9	$2 \cdot 29$	5	2.74	21	$3 \cdot 30$	Tis	$3 \cdot 35$	84	$3 \cdot 90$	1,95	$3 \cdot 60$	11.5
10.	2.27	4	2.74	21	3.25	72	$3 \cdot 50$	102	$4 \cdot 20$	200	3.60	11.5
11.	2.27	4	2.73	20	$3 \cdot 20$	fitj	$3 \cdot 6.5$	121	$4 \cdot 5$	24.5	3-52	10.5
12.	$2 \cdot 25$	4	2.73	20	$3 \cdot 10$	54	3.80	142	$4 \cdot 20$	200	$3 \cdot 55$	108
13	$2 \cdot 25$	4	2.73	20	$3 \cdot 00$	42	3.70	128	$3 \cdot 90$	156	$3 \cdot 50$	102
14	$2 \cdot 35$	5	$2 \cdot 9.5$	37	$\bigcirc \cdot 95$	37	3.65	121	3. 510	14.	$3 \cdot 55$	119
15.	$2 \cdot 50$	9	$3 \cdot 44$	95	$2 \cdot 90$	$3: 3$: 311	112	$3 \cdot 7.5$	135	$3 \cdot 610$	11.5
16	2.75	21	$5 \cdot 50$	390	$3 \cdot 60$	115	$3 \cdot 40$	90	$3 \cdot 70$	128	$3 \cdot 60$	115
17.	$3 \cdot 10$	54	$5 \cdot 30$	360	$4 \cdot 30$	215	$3 \cdot 40$	90	$3 \cdot 50$	102	$3 \cdot 45$	96
18.	$3 \cdot 35$	84	$3 \cdot 60$	115	$3 \cdot 50$	102	$3 \cdot 45$	96	$3 \cdot 60$	115	$3 \cdot 50$	102
19.	3.33	82	$3 \cdot 40$	90	$3 \cdot 4{ }^{1}$	911	$3 \cdot 55$	115	$3 \cdot 80$	128	$3 \cdot 0$	142
20.	$3 \cdot 32$	81	$3 \cdot 30$	78	$3 \cdot 30$	78	$3 \cdot 64$	115	$3 \cdot 60$	115	$3 \cdot 85$	14!
$\because 1$	$3 \cdot 32$	81	$3 \cdot 10$	jt	3.00	42	$4 \cdot 00$	170	$3 \cdot 50$	102	$3 \cdot 85$	149
22.	$3 \cdot 30$	78	$3 \cdot 00$	42	$2 \cdot 90$	33	$3 \cdot 60$	115	3.60)	115	$3 \cdot 75$	135
23.	$3 \cdot 29$	77	$2 \cdot 90$	33	¢. 80	25	$3 \cdot 40$	90	$3 \cdot 70$	125	$3 \cdot 60$	115
24.	$3 \cdot 29$	77	$2 \cdot 91$	33	$2 \cdot 80$	25	$3 \cdot 30$	-	$3 \cdot 80$	142	3-5.5	10.8
25.	$3 \cdot 29$	77	$2 \cdot 90$	33	$2 \cdot 70$	18	$3 \cdot 75$	135	3.95	163	$3 \cdot 50$	102
6.	$3 \cdot 36$	78	$2 \cdot 90$	33			$3 \cdot 90$		$4 \cdot 20$	200	$3 \cdot 50$	102
-7	$3 \cdot 5$	72	$2 \cdot 85$	29	$2 \cdot 75$	21	$3 \cdot 511$	102	$4 \cdot 40$	230	$3 \cdot 65$	108
28.	$3 \cdot 20$	66	$2 \cdot 70$	18	$2 \cdot 90$	33	$3 \cdot 35$	84	$4 \cdot 15$	192	$3 \cdot 60$	115
29	3. 10	54				16.5	$3 \cdot 20$	66	3.90	156	$3 \cdot 50$	1,1 ?
30.	$3 \cdot+10$	42			$3 \cdot 10$	54	$3 \cdot 10$	54	$3 \cdot 80$	142	$4 \cdot 00$	170
31.	$2 \cdot 90$	33			$3 \cdot 00$	4.			$3 \cdot 70$	128		

SESSIONAL PAPER No. $25 f$
Daily Crauge Heights and Discharges of Gold Creek for 1913-Con.

HIXON CREEK NEAR MOUTH.

Records Available-Continuous records since November, 1912.
Winter Conditions.-Open water all year.
Gauge.-Vertical staff gauge-readings generally four or five a week. Bed of stream scoured out about November 13, 1912, changing rating of gauge. Gauge was finally washed out and new one installed at a different section, September 24, 1913.

Channel.-Rocky, water swift at higher stages.
Discharge Measurements.-One in 1912 for gauge N゙o. 1A; eight in 191:3 for gauge No. 1; four in 1913 for gauge No. 2.

Accuracy.-Only moderate accuracy on account of changes. (iauge No. 2 should give accurate results when more fully rated.

HINON CREFK。

Hixon creek has its source in the mountains northeast of Burrard inlet, at an elevation of about 3,000 feet, and discharges into the Mesliloet river as about 5 miles from the mouth, at an elevation of some 200 feet. It is part of Burrard inlet drainage. The more important tributaries are Belknap creck and Barnes creek, both entering from the north.

The rainfall in the Hixon creek watershed is quite heavy, being probably from 120 to 150 inches. In the winter there is from 2 to 6 feet of snow. In the higher altitudes there are snowfields which remain most of the year. At the mouth of the river the stream is open all the year round, and above Belknap lake there is very little ice, so that open-water conditions exist there too.

The Westminster Power Company may use some of the water from Hixon creek in connection with their high-head development. The latest plan includes the diversion of water from Belknap creek, which is a tributary of Hixon creek, and its storage in Norton lake. It may be possible also to convey water from the main branch of Hixon creek above Belknap creek into the same reservoir. From Norton lake the main pipe-line would lead to the power-house situated near the mouth of Brandt creek. An alternative scheme would provide for a pipe-line down Hixon creek, collecting water from Hixon creek and Belknap lake. This pipe-line, however, would be at a lower elevation than Norton lake, and could not be connected directly to the main penstocks.

Gauging stations have been established at the mouth of Hixon creek and at Hixon creek above Belknap creek. It was hoped that the station at the mouth of the stream might be used to give some idea of the flow higher up the stream, but this has been found impracticable, and the lower station will probably be abandoned as soon as facilities are provided for taking more frequent gauge readings on the upper stations. There are two stations also on Belknap creek, which is a tributary of Hixon creek.

Discharge Measurements of Hixon Creek near Mouth, 1912 and 1913.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1912.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec- it .
Oct. 19	C. G. Cline	1,046	18	35.0	$2 \cdot 01$	2.00	:71.;
June 1	H. C. Hughes	1,673	36	$63 \cdot 0$	$5 \cdot 37$	1.80	23.39.01
" 5	do	1,673	36	$52 \cdot 1$	$4 \cdot 67$	1.48	24.11
* 14	do	1,673	36	56.1	4.80	$1 \cdot 60$	$2.70 \cdot 11$
" 18	do	1,673	34	40.8	4.35 4.32	1.35	1196.5
" 27	do	1,673	34	46.5	4.95	1.40 1.40	176.3 212.11
July 18	do	1,673	28	$26 \cdot 6$	$5 \cdot 63$	1.02	${ }^{3} 150 \cdot 11$
Aug. 4	do	1,673	28	23.0	$4 \cdot 52$	$0 \cdot 69$	$114 \cdot 11$
Sept. 24	F. MacLachlan.	1,673	48	27.4	1.21	$3 \cdot 79$	$4.33 \cdot 2$
Oct. 18.	do	1,673	54	$41 \cdot 5$	$1 \cdot 64$	$4 \cdot 34$	72.5
Nov 31.	do	1,673	51	$\because 1.5$	1.15	$3 \cdot 89$	36.3
Nov. 5	do	1,521	56	53.4	2.27	4.59	$121 \cdot 4$

Note. - ${ }^{1}$ Gauge No. 1A.
${ }_{3}^{2}$ Gauge No. 2.
${ }^{3}$ Different Section.
${ }^{4}$ Different Gauge No 2.

SESSIONAL PAPER No. $25 f$
Monthly Discharge of Hixon Creek near Mouth for 1913.

Monte.		Discharge in Second-Feet.			IUMME.
		M...1:: $: 11$.	Minimum.	Mean.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
Jeruary	.	70	53	60.8	4,100
February.	121	20	$52 \cdot 7$	2,920
March.	-2	53	60.9	4,110
April.	166	\therefore	$104 \cdot 6$	¢, 200
May.		070	75	$246 \cdot 3$	15,100
June..	\therefore -	175	273.5	16,300
July......	.	41	95	178.0	10,900
August....		14.)	71	$90 \cdot 2$	5,550
September	167	34	$59 \cdot 8$	3, 560
Octcber...	661	31	104.0	6,400
November	702	40	1..i	9,580
December	200	37	84.6	5,200
The year.		702	20	124.5	90,200

N'ote.-Accuracy" "A' and "C"

Monthy Discharge of Hixon Creek near Mouth for 1912.

Month.	Discharge in Second-Feet.			MEN-Osf.Tota!inacre-feet.
	Maximum.	Minimum.	Mean.	
	$\begin{aligned} & 570 \\ & 5110 \end{aligned}$	66 60	$\begin{array}{r} 149 \\ 69 \end{array}$	$\begin{aligned} & 8,570 \\ & 4,240 \end{aligned}$

```
Note.Accuracy "A" and "C'
```

5 GEORGE V., A. 1915

	I)Ay.	Oetolser.		November.		December.	
-		Gauge \mid Height	Discharge	Gauge Height	Discharge	Gauge Height.	Dischares
		Firt	Ser ft.	Fcet.	I Sec.-ft.	Feet.	Sece it
1				1.7	66		71
$\frac{2}{3}$				1.9 $2 \cdot 15$	70 75	11.25	71 70
1					100	U. 1	67
5				$2 \cdot 85$	121		6
f					108	$-0 \cdot 25$	37
7				$2 \cdot 55$	92		(1)
8					100	-0.03	6:3
9					106		${ }^{\text {fifi }}$
111					114		71
11					122		73
12					130	$0 \cdot 3$	76
				Gauge			
13				$\text { No. } 1$	180	0. 2.5	if
14				$1 \cdot 15$	231	$0 \cdot 75$	110
1.5				$1 \cdot 25$	185		92
117				1.05	150		71
17.		Gauge			150	$0 \cdot 1$	69
1.		Nu. 1 A			150	$0 \cdot 5$	\therefore
19		$\stackrel{1}{2} \cdot 1$	72		150	$0 \cdot 2$	71
20		70	1.05	150	0.05	5 ij
21.		1.50	69	$2 \cdot 35$	570		6.4
22.		72		430	-0.03	63
23.			75		290		63
24.		-	78	$1 \cdot 15$	150		$6:$
25			$\therefore 1$	$0 \cdot 6$	95		$6: 3$
2 i			85		S. 5	-0.03	6
27		$2 \cdot 5$	\therefore	$0 \cdot 3$	76	$0 \cdot 2$	71
28		-	4	$0 \cdot 2$	71	$0 \cdot 05$	fiti
29			\cdots		72		61
30			75		73		63
31.			70				611

SESSIONAL PAPER No. $25 f$
Daily Ciatie Heights and Discharges of Hixon Creek near Mouth for 1913

Daily Gatge Heights and Discharges of Hixon Creek near Mouth for 1913.
-Con.

Jones creek.
Location.-At outlet of Jones lake in section 28, township 3, range 27, west of the 6 th meridian.

Records Available.-Continuous records since April, 1911, supplied by Messrs. Anderson and Warden, Vancouver. Records in this report continuous since November 1, 1911.

Winter Conditions.-Open water.
Gauge.-V'ertical staff, gauge readings made daily hy men specially employed by Messrs. Anderson and Warden, Civil Engineers.

Channel.-Uniform section with deep water and a good control.
Discharge Measurements.-One measurement in 1911, one in 1912, and two in 1913 are well distributed and agree fairly well with those taken by Messrs. Anderson and Warden.

Accuracy.-Good measurements and gauge readings.

Jones lake and creek.

Jones creek rises in Jones lake, which is situated in the north-westerly part of township 3 , range 27 , west of the 6 th meridian, and which is at an elevation of 1,950 feet. It is marked Wahleach creek on some of the Dominion sectional Maps. The creek discharges into Fraser river near Ruby creek in section 19, township 4 , range 27 , at an eleration of about 100 feet. It is part

SESSIONAL PAPER No. $25 f$
of the Fraser dramage. Boulder creek enters from the east just below Jones lake. The areat of the watershed above the outlet of the lake is 40 square miles. The Water is not used at present, hut it is proposed to use it for the development of power. ('areful hydrographie studie- have been made at Jones lake during 1911, 1912. and 1913 by Anderson and Warden, Civil Engineers. Vancouver. acting for the Vancouver Power Company. They extablished a gauging station on Jones rereek at the outlet from Jones lakes and another on Boukder ereek near the mouth, and regular gatuge readings have been taken sinme Mareh 24, 1910. The precipitation is from 80 to 90 inches per annum.

Jones lake is situated in a valley high up in a spur of the Cheam mountains, east and north of the town of Chilliwack and about 7 miles east of Agassiz. The waters flow in a northerly direction for about 6 mitro. dianarging into the Fraser river. The dramage area of 40 sumare mile - lix- mostly above the 3.000 foot level, and some of the surrounding momatains are soone feet high. The land near the lake is covered with an inferior erowth of timber. mostly spruce and cedar. The ravines and gullies hare a thick growth of ferm and devil chub.

The area of Jones lake is 1,263 acres. The shores of the lake in places rise abruptly from the water, but in other places, especially where small creeks enter, there are to be found low flats and swamps. At the 50 -foot contour the area of the lake or reservoir would be about 2,300 acres.

The construction of a 6-mile pipe-line down the Jones ereek valley to the Fraser would be very expensive, and the maintenane of sum a monstruetion would be difficult. The development proposed by the Vanconver Power Company is hy means of a tumel from the lake at its mot westerly point, extending through the mountains to the Fraser valley. This tumel would be 10.200 feet long. and from its outlet to the power-house the water would be convered in presure pipes 6:000 feet long. In this way an ffeertive hean of 1.800 feet wonk be obtained.

Discharge Measurements of Jones Creek and Jones lake, 1911, 12, 13.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	H. Velocity:	Gauge Height.	Discharge.
1911.			Feet.	sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Sov. 3	K. H. Smith	1,057	51	\cdots	0.5	$1 \cdot 3$	515
Sept. 18	C. G. Cline	1,046	51	:	1.	\cdots	:-
July 24	K. G. Chisholm	1,055		150	$2 \cdot 3$	$2 \cdot 11$	411
Sept. 11	K. G. C. \& F. Mach	1,055	31	131	$1 .$.	$1: 4$	17

Monthly Discharge of Jones creek and Jones lake for 1911.
(Drainage area. 40 square miles.)

	Montr.	Discharge in Second-Feet.				Rux-Off.	
		Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
November		395	50	140	$3 \cdot 50$	$3 \cdot 90$	8,330
Iecember		180	68	110	$2 \cdot 75$	3-17	6,760

Monthis Discharge of Jones Creek at Jones lake for 1912.
(Drainage area, 40 square miles.)

	Dinmarge in Second-Feet.				Run-Off.	
Month.	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
January.	205	55	$84 \cdot 9$	$2 \cdot 12$	$2 \cdot 44$	5,220
February..	190	80	$139 \cdot 4$	$3 \cdot 48$	$3 \cdot 62$	7,720
March....	74	49	$56 \cdot 1$	$1 \cdot 40$	1.61	3,450
April.	70	55	$62 \cdot 7$	1.57	1.75	3,730
May...	320	70	$195 \cdot 7$	$4 \cdot 87$	$5 \cdot 64$	12,000
June. .	380	170	$277 \cdot 0$	$6 \cdot 92$	7.72	16,500
Juls:	245	155	211.0	$5 \cdot 28$	$6 \cdot 09$	13,000
August.	320	120	$178 \cdot 7$	$4 \cdot 46$	$5 \cdot 14$	10,900
September	130	60	$90 \cdot 6$	$2 \cdot 27$	$2 \cdot 53$	5,390
October....	120	55	$79 \cdot 6$	1.99	$2 \cdot 29$	4,900
November.	320	70	$155 \cdot 6$	$3 \cdot 89$	$4 \cdot 34$	9,230
December.	180	70	$95 \cdot 6$	$2 \cdot 39$	$2 \cdot 75$	5,880
The year...	380	55	$135 \cdot 3$	$3 \cdot 38$	45.92	97,920

Monthly Discharge of Jones Creek at Jones lake for 1913.
(Drainage area, 40 square miles.)

	Month.	Discharge in Second-Feet.				Rux-Off.	
		Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	Total in acre-feet.
Januarsp.		S0	52	59.4	1.49	1.72	3,650
February.		260	49	89.5	$2 \cdot 24$	$2 \cdot 33$	4,970
March....		80	55	(in. 9	1.67	1.92	4,110
April.....		140	52	94.8	$2 \cdot 37$	$2 \cdot 64$	5,640
May......		395	89	$242 \cdot 0$	$6 \cdot 05$	6.98	14, sa0
June......		520	320	$397 \cdot 8$	9.94	11.05	23,680
July.......		425	275	$350 \cdot 0$	8.75	10.09	21,520
August....		290	145	$203 \cdot 9$	$5 \cdot 10$	$5 \cdot 88$	12,500
iSeptember		485	95	179.4	$4 \cdot 48$	$5 .(11)$	10,650
, October...		610	74	199.0	4.98	5.74	12,200
November		320	95	$170 \cdot 6$	$4 \cdot 26$	4.75	10,100
December		150	55	84.6	$2 \cdot 11$	$2 \cdot 43$	5,200
The year.		610	49	178.2	$4 \cdot 45$	$60 \cdot 57$	129,100

[^4]
SESSIONAL PAPER No. 25 f

Daily Gauge Heights and Discharges of Jones Creek at Jones lake for 1911.

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Jones Creek at Jones Lake for 1912.

DAY.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.
	Feet.	Sec.-ft. 1	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	0.70	63	1.25	170	0.80	74	$0 \cdot 60$	55	0.80	74	$1 \cdot 35$	190
\because	$0 \cdot 70$	63	$1 \cdot 20$	155	0.75	70	$0 \cdot 60$	55	$0 \cdot 80$	74	$1 \cdot 30$	180
:	$0 \cdot 65$	60	$1 \cdot 10$	130	$0 \cdot 75$	70	$0 \cdot 65$	60	$0 \cdot 80$	74	$1 \cdot 25$	170
4	$0 \cdot 65$	60	1.05	120	$0 \cdot 70$	63	$0 \cdot 65$	60	0.80	74	$1 \cdot 25$	170
5	0.65	60	1.05	120	$0 \cdot 70$	63	$0 \cdot 65$	60	$0 \cdot 80$	74	$1 \cdot 25$	170
6	$0 \cdot 6.5$	60	1.05	120	$0 \cdot 65$	60	$0 \cdot 65$	60	0.75	70	$1 \cdot 30$	150
7	$0 \cdot 60$	55	1.05	120	$0 \cdot 65$	60	$0 \cdot 65$	60	0.85	80	$1 \cdot 45$	215
8	$0 \cdot 60$	55	1.10	130	0.65	60	$0 \cdot 65$	60	1.00	108	1.65	275
9.	$0 \cdot 60$	55	1.15	140	$0 \cdot 65$	60	$0 \cdot 65$	60	$1 \cdot 20$	155	$1 \cdot 65$	275
10.	$0 \cdot 60$	55	1.30	180	$0 \cdot 60$	55	$0 \cdot 70$	63	1.20	155	$1 \cdot 65$	275
11.	$0 \cdot 60$	55	$1 \cdot 25$	170	$0 \cdot 60$	55	0.75	70	$1 \cdot 20$	155	$1 \cdot 60$	260
12.	$0 \cdot 60$	55	$1 \cdot 20$	155	$0 \cdot 60$	55	$0 \cdot 75$	70	$1 \cdot 25$	170	1.65	275
13	0.70	63	$1 \cdot 15$	140	0.55	52	0.75	70	1.40	205	1.80	320
14	0.80	74	$1 \cdot 25$	170	$0 \cdot 55$	52	$0 \cdot 70$	63	$1 \cdot 60$	260	1.90	350
15	0.90	89	$1 \cdot 20$	155	$0 \cdot 55$	52	0.70	63	1.80	320	1.85	335
16	1.00	108	1.25	170	(). 55	52	$0 \cdot 70$	63	1.70	890	1.70	-90
17	0.95	98	$1 \cdot 30$	180	$0 \cdot 55$	52	$0 \cdot 70$	63	1.55	245	$1 \cdot 60$	260
18	0.90	84	1.35	190	$0 \cdot 55$	52	0.70	63	1.45	215	1.65	275
19.	0.85	80	$1 \cdot 30$	180	$0 \cdot 5.5$	52	$0 \cdot 70$	63	$1 \cdot 40$	205	1.75	30.5
20.	0.75	70	1.20	155	$0 \cdot 55$	52	$0 \cdot 70$	63	$1 \cdot 50$	230	1.85	335
21	$0 \cdot 80$	74	$1 \cdot 10$	130	$0 \cdot 55$	52	0.70	63	1.70	290	2.00	350
22	$0 \cdot 80$	74	$11 \cdot 10$	130	$0 \cdot 50$	49	0.70	63	$1 \cdot 70$	290	1.90	350
23	$3 \cdot 80$	74	$1 \cdot 0.5$	120	$0 \cdot 50$	49	0.70	63	$1 \cdot 60$	260	1.80	320
24.	$0 \cdot 80$	74	1.00	108	$0 \cdot 50$	49	0.70	63	1.50	230	1.80	320
25.	1.00	108	0.95	98	$0 \cdot 50$	49	$0 \cdot 70$	63	$1 \cdot 50$	230	1.85	33.5
26.	1.05	120	0.95	85	$0 \cdot 55$	52	0.70	63	1.60	260	1.90	350
27	1.05	120	$0 \cdot 80$	89	0.55	52	$0 \cdot 70$	63	1.70	290	1.90	350
25	1.00	108	$0 \cdot 85$	80	$0 \cdot 55$	52	0.70	63	1.65	275	1.80	320
29	$1 \cdot 05$	120			$0 \cdot 60$	55	$0 \cdot 70$	63	1.60	260	1.60	260
30	$1 \cdot 40$	205			$0 \cdot 65$	60	0.75	70	1.50	230	1.45	220
81.	1. 35	190			$0 \cdot 65$	60			$1 \cdot 40$	205		

SESSIONAL PAPER No. $25 f$
Daily Gatge Heights anid Drscharses of Jones Creek at Jones Lake for 1912-Concluded.

Dfy.	July.		dugrst.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.ft.	Feet.	I Sec.-ft.	Feef.	Sec.-ft.	Feet.	Sec.-ft.
1	$1 \cdot 35$	195	$1 \cdot 2.5$	170	$1 \cdot 10$	130	(1. 7.1	63	$0 \cdot \mathrm{sin}$	74	1.05	120
2	1.4.	220	$1 \cdot 25$	170	$1 \cdot 10$	130	11.70	${ }^{6.3}$	11.75	70	$1 \cdot 05$	120
3	1.40	205	$1 \cdot 9$	155	$1 \cdot 11$	130	(1. 80	74	11.75	70	$1 \cdot 30$	180
4	$1 \cdot 111$	205	$1 \cdot 15$	14.5	$1 \cdot 05$	120	(1.) ${ }^{\text {a }}$	74	0.75	70	1.30	180
5.	$1 \cdot 40$	205	$1 \cdot 15$	145	1.00	108	11.31	74	11. 75	70	$1 \cdot 20$	1.5
6.	$1 \cdot 50$	230	$1 \cdot 10$	130	0.95	99	11.75	\cdots	0.75	70	$1 \cdot 11$	130
7.	$1 \cdot 50$	230	1.05	120	1.00	108	(1.7.5	70	(1). 30	74	1.00	108
+	1.4.5	220	$1 \cdot 14$	130	1.05	120	(1.2.1)	74	19.い	74	0.9 .5	93
9.	1.411	205	$1 \cdot 25$	170	1.05	120	(1).e.	74	11. 80	74	11.95	98
10.	1.35	195	$1 \cdot 55$	245	1.00	108	11. 75	70	11.80	74	1. 90	89
11.	$1 \cdot 35$	195	$1 \cdot 811$	320	$1 \cdot 00$	108	1.70	\%	19.0.1	74	11.85	80
12.	1.35	195	1.60	260	$1 \cdot 00$	108	(1.70	63	11.	S0	11. 90	89
13.	1.55	245	1.45	220	1.00	108	(1. $\cdot 6$	(i)	11. 40	205	11.85	ה11
14.	1.55	245	1.3.5	195	1.00	110.	11.65	(i)	1.40	205	11.90	89
15.	1.55	245	$1 \cdot 40$	205	0.95	99	(1.6)	55	$1 \cdot 30$	180	11.90	$8!$
16.	$1 \cdot 50$	230	$1 \cdot 55$	245	0.99	59	11.70	63	1.15	145	17.85	cin
17.	1.50	230	$1 \cdot 50$	230	$0 \cdot 90$	89	1.05	12.	$1 \cdot 11$	130	11.95	is
18.	1.50	230	$1 \cdot 45$	220	0.90	$\therefore 9$	1 . (1i)	105	1.40	205	11.95	98
19.	$1 \cdot 50$	230	1.40	205	0.9 .5	S0	$1 \cdot(11)$	108	1.4	320	11.95	95
20.	1.5.1	230	$1 \cdot 35$	195	$0 \cdot 80$	74	U.95	!	1.75	305	11.9	\cdots
21.	1.4 .5	220	1-5.1	180	$0 \cdot 80$	74	1). 6.1	9	1.75	305	(1) ${ }^{1}$	74
22.	1.4 .5	220	$1 \cdot 30$	180	$0 \cdot 80$	74	10.85	41	$1 \cdot 65$	275	(1, 2)	71
23.	$1 \cdot 40$	205	$1 \cdot 30$	180	11.311	74	11.4 .7	s0	1.65	275	1. 50	74
24.	1.1.	205	1.3.1	180	0.80	\%	(1.8.5	80	1.55	245	1. 30	74
25.	$1 \cdot 40$	205	$1 \cdot 3.1$	180	0.75	719	(1.4.5	95	1.45	220	1.41	74
26.	1.45	220	1.25	170	0.75	7.1	1.10	108	1.35	195	11.75	70
27.	1.411	205	$1 \cdot 20$	1.5	0.70	63	(1.95	98	$1 \cdot 25$	170	1.75	70
28.	$1 \cdot 30$	180	$1 \cdot 10$	130	0.70	63	11.00	4	1, -2,	155	11.75	70
29.	1-95	170	1.05	120	11. +1.5	60	(1).(1)	89	$1 \cdot 10$	130	11.75	71
30.	1.20	155	$1 \cdot 0$	120	$0 \cdot 65$	60		80	$1 \cdot 11$	130	(1).81	74
31.	$1 \cdot 20$	155	1.05	120	\cdots		(1. 80	7	\cdots		11.85	\cdots

5 GEORGE V., A. 1915
Daili ($\mathrm{a} a \mathrm{ug} \mathrm{E}$ Heights and Discharges of Jones C'reek at Jones Lake for 1913.

SESSIONAL PAPER No． $25 f$
Daily Gauge Heights and Discharges of Jones Creek at Jones Lake for 1913－＇ronchuled．

DAy．	July．		August．		September．		October．		November．		December．	
	Gauge Height	Dis－ charge	Gaturn Height	Dis－ charge	Gituer Height	Dis－ charge	Gauge Herzl．s	Dis－ charge．	Gauge Height	Dis－ charge	Gauge Height	Dis－ charge
	Feet．	Sec．－ft．	Feet．	S－rort	Feet．	Sec．－ft．	Feet．	sec．－ft．	Feet．	Sec．－ft．	Feet．	Siedeft．
1	2.00	350	1.71	$2!11$	1－1．7	14.5	11.05	93	$1 \cdot 1.5$	120	$1 \cdot 30$	101
2	1.95	365	1.70	2！ 11	$1 \cdot 111$	1．31	11.90	s9	$1 \cdot 15$	120	1.20	15．\％
3	1．	335	1.70	290	$1 \cdot 10$	$13+$	0.90	－9	11.9	！	$1 \cdot 10$	130
1	1.75	305	1． 65	20.5	$\therefore 05$	39.5	$0 \cdot \mathrm{i}$	\1	$1 \cdot 05$	120	$1 \cdot 05$	1211
5	1.85	335	1.65	275	2.35	485	11．${ }^{\text {a }}$	34	1.05	120	$1 \cdot 00$	10.
6	1．91	350	$1 \cdot 60$	260	$2 \cdot 20$	440	0 \％ 0	it	$1 \cdot 15$	140	1.00	1．14
7	$\cdots \cdot 11$	4111	1.55	245	$1 \cdot 50$	320	$0 \cdot 80$	74	$1 \cdot 10$	1.19	1.00	1 1以
，	$2 \cdot 00$	350	$1 \cdot 60$	2in	$1 \cdot 60$	$\because 60$	0 50	it	$1 \cdot 05$	121	$1 \cdot 00$	10%
＂	1．9．）	350	1 1．5	245	1.50	230	$0 \cdot 85$	s）	1．10）	130	$0 \cdot 95$	a
10.	$2 \cdot 05$	39.5	1.50	230	$1 \cdot 40$	205	0.90	\cdots	1.20	15%	$0 \cdot 90$	4
11.	$2 \cdot 11$	4111	1.45	215	$1 \cdot 30$	180	$2 \cdot 10$	410	$1 \cdot 15$	14.1	（1）．91	$9!$
12.	$2 \cdot 05$	395	1．4．5	215	1－25	170	2．71	810	1.16	1211	（1）． 311	$4!$
13.	3．11	410	1.40	205	$1 \cdot 20$	155	2.70	ri1．	1 \％	1 H	0.85	\cdots
14	2－141	200	1.35	119	11.5	145	$2 \cdot 25$	45.5	114.5	95	0．80	74
15.	$1 \cdot \cdots$	320	$1 \cdot 35$	195	1－10	130	1.95	36%	11．15	！	$0 \cdot 85$	－
16.	1.70	290	$1 \cdot 30$	1 l	1.05	120	1．70	290	1.80	320	0． 80	74
17.	1． 1.5	275	1． 30	180	$1 \cdot 05$	120	1.50	230	1.80	320	（）． 80	74
18.	1－6．5	275	1.35	195	$1 \cdot 15$	145	1.45	220	1 1is	275	0.80	74
19.	1．71	290	$1 \cdot 30$	180	$1 \cdot 15$	145	$1 \cdot 35$	190	1.51	230	0.75	70
20.	1.95	365	$1 \cdot 20$	155	$1 \cdot 10$	130	$1 \cdot 30$	180	1.35	190	0.75	70
21.	$2 \cdot 10$	410	$1 \cdot 15$	145	1.05	120	$1 \cdot 25$	165	1.25	165	0.75	70
22.	$2 \cdot 15$	425	$1 \cdot 15$	145	$1 \cdot 20$	1．5．）	$1 \cdot 20$	155	$1 \cdot 15$	140	$0 \cdot 70$	6.3
23	2.15	425	1.25	170	$1 \cdot 15$	145	$1 \cdot 25$	17.5	$1 \cdot 10$	130	$0 \cdot 65$	150
24.	$2 \cdot 10$	410	1.25	170	$1 \cdot 05$	120	1.45	21.5	1.50	230	118.5	B）
25.	$2 \cdot 05$	395	$1 \cdot 25$	170	1.00	108	1.45	21.5	1.65	295	0.65	$6)$
26.	1.90	350	$1 \cdot 25$	170	1.00	108	1.35	190	1.50	230	$0 \cdot 60$	5.5
27.	1.85	335	1.20	155	0.45	in	$1 \cdot 30$	180	1.45	－	1）．60	8.5
28.	1.80	320	1.20	1.5	1.105	120	$1 \cdot 20$	$1: 5$	1.40	205	$0 \cdot 60$	\therefore
29.	1．4．5	365	1.20	1.5	1.05	120	1.15	140）	1.35	190	1）． 60	\therefore
30.	1.75	305	1.20	150	I． 00	108	$1 \cdot 05$	120	1.30	いい	$0 \cdot 60$	\therefore
31.	1.65	275	$1 \cdot 20$	15.5			1.05	120			$0 \cdot 60$	55

MESLILOET RIVER．

Location．－Near mouth of Canyon， 8 miles from mouth of river，in section 8 ，township 7 ，range 7 ，west of 7 th meridian．

Records Available．－Continuous since October 31， 1912.
Winter Conditions．－Open water all year．
Gauge．－Vertical staff gauge，four or five readings a week．
Channel．－Bed of stream rocky，water swift at higher stages．
Discharge Measurements．－One measurement in 1912 and nine in 1913 are well distributed and do not show any great discrepancy．

Acruracy．－Weter measurements good and watere realings nearly every day should give good results．

mesliloft（indian）river．

Mesliloet or Indian river has its source in the mountains east of Howe sound at an elevation of some 3,0 ，000 feet，and dierhatere into the North Arm of Burrard inlet at seatevel．The dramage area above the mouth is entimated at 75 square miles．About 7 miles from the month of the river there is a camyon which provides a good site for power devedopment．I wamging sation has been established at this point，and the dramage area lying above it is cetimated at 65 square miles．

The watershed of the Mesliloet river is quite mountainous and lies close to the coast. On this account it receives quite a heavy precipitation, amounting to between 120 and 150 inches. There is a heavy snowfall in the winter, particularly in the higher altitudes. Winter thaws and rains are frequent, and these often cause winter freshets.

The more important tributaries are: Hixon creek, Brandt creek, and the Left Fork. These streams all enter from the east. There are no tributaries of any importance entering from the west.

There is considerable good timber in the watershed, consisting mostly of fir and cedar. A certain amount of the cedar has been cut into shingle bolts, but very little fir has been removed as yet. The stream has been used for running shingle bolts, but is not suitable for running logs. It will be necessary to build a railroad to get the logs out. Messrs. Brittenham \& Young, of Maddison, Wis., who own much of the timber in the valley, are said to be planning to build a saw-mill on Burrard inlet, at the mouth of the Mesliloet river. Booming grounds have already been laid out, but nothing further has been done as yet.

The Indian River Park Company has built a summer hotel, Wigwam Inn, and laid out a small park near the mouth of the river. The place is getting to be quite a pleasure resort, and the company's steamer makes regular trips to Vancouver during the summer.

There are good gravel deposits at the mouth of the Mesliloet river. A couple of dredges are usually working there supplying gravel for use in the city of Vancouver.

Salmon run up the river for several miles, and a good catch is made every year by the Indians who have a small reserve near the mouth.

There is very little agricultural land in the Mesliloet valley, and what little there is, is mostiy covered with heavy timber at present. There is no agricultural development in the valley except a small garden near the Indian reserve.

At the canyon there is a good site for power development. A dam could be raised at this point to a height of 50 feet or more, and it would give splendid storage in the valley above. A $21 / 2$-mile pipe line could develop a head of about 350 feet. On the two tributaries, Brandt and Hixon, a high-head development of some 2,000 feet is possible. These streams and their tributaries, Young and Belknap, have good storage facilities, though their combined flow is not nearly as great as that of the Mesliloet proper. The Westminster Power Company, which has applied for the water rights on the main river and also on the tributaries, proposes to place the machinery for its two developments in the one power-house, to be situated near the mouth of Brandt creek.

The Mesliloet river can be reached by boat from Vancouver. There is a landing place at the Wigwam Imn. From the landing there is a trail going up towards the wagon road, but there is no bridge across the river. The best way of getting to the wagon road is by using a canoe or small boat from the hotel. The road runs up the valley some 6 miles to an abandoned logging camp. Horses using this trail must ford the river at three places. There is a suspension foot bridge at the lower ford and a foot trail connecting the two upper fords, so that it is not necessary to cross the river at these points when travelling on foot. From the camp there is a foot trail up the main valley, and this has recently been run through to squamish for the convenience of fire rangers. There is also a regular pack trail from the camp to Norton lake. This trail has been laid out and cleared so that pack horses can travel it. A cabin at Norton lake provides headquarters for the gauge readers to the upper stations. From this cabin there are trails leading to upper Brandt creek, loung creek, Amn lake, Belknap lake, and upper Hixon creek. At present there are no horses in the valley. All travelling must he done on foot, and the gauge readers pack in their own supplies. Sometimes supplies can be conveyed up the river to the lumber camp by canoe.

SESSIONAL PAPER No. $25 f$
A gauging station was maintained for a year at the mouth of the Mestiloet river, but in October, 1912, a new station was established close to the canyon to take its place. Regular readings are being taken at this latter station which gives the exact amount of water arailable at the proposed intake site. There are also a number of gating stations on the tributary streams, to give the necesary data in comection with the high-head development. They are as follows: Brandt creek and tributaries-Brandt at mouth, Brandt above Young creek, Young creek at mouth, Norton creek at Norton lake; Hixon creek and tributaries-Hixon (reek at mouth. Hixon creek above Betknap) ereek, Belknap) creek at Belknap lake, Belknap creek below Ann lake.

Discharge Measurements of Mesliloet River at Tpper Station,1912, and 1913

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1912.			Feet.	Sq. ft.	Ft. persec.	Feet.	Sec.-ft.
()et. 31	C. G. Cline.	1,016	70	$120 \cdot 0$	1.57	2.26	188
1913.							
June 6	H. C. Hughes.	1,673	80	$232 \cdot 0$	$2 \cdot 90$	$3 \cdot 25$	的i2
-. 13	do	1,673	80	$239 \cdot 5$	$3 \cdot 12$	$3 \cdot 40$	713
Ju1. 17	do	1,673	80	$195 \cdot 0$	2.40	2.90	414
Juls	do	1,673	80	$203 \cdot 4$	$2 \cdot 40$	$2 \cdot 98$	471
" 29	do	1,673	75	$146 \cdot 0$	$1 \cdot 65$	$2 \cdot 25$	230
Sept. 17	C. G. Cline.	1,673	70	$109 \cdot 0$	$1 \cdot 16$	1.57	122
Oct ${ }^{\text {O }}$	F. MacLachlan	1,673	7	$81 \cdot 0$	11.41	1.61	$76 \cdot 5$
Nor. 110	do	1,521	83	$186 \cdot 0$	2.29	$2 \cdot 86$	417
- 16	do	1,521	\therefore	$277 \cdot 0$	$3 \cdot 47$	$3 \cdot 58$	942

Monthly Discharge of Mestilot River at Camyon- 8 miles from Mouth for 1913
(Drainage area, 65 square miles.)

Muita.	Discharge in Second-Feet.				Run-Ofr.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { ler } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
January	147	60	75	$1 \cdot 2$	1 \because 仿	4,800
February	1,720	50	2×3	4.1	1 - i	15,700
March...	223	72	131	$2 \cdot 0$	$2 \cdot 31$	8,055
April.	690	41	337	$5 \cdot 2$	5. 810	20,000
Day..	1,370	1411	14.5	$10 \cdot 11$	11-:	39,700
June.	1,290	436	711	$11 \cdot 0$	$12 \cdot 27$	42,600
July...	1,110	185	419	$7 \cdot 1$	$3 \cdot 07$	27,600
Ausuat	365	106	18.5	$3 \cdot 11$	$3 \cdot 46$	11,560
Sertember.	48.5	\cdots	21.4	, , .	$3 \cdot 6 \mathrm{~N}$	12,700
Oetober	2,120	72	$\because \cdot$	4.5	J. 18	12.14111
November.....	1,850	\because	594	$9 \cdot 1$	$10 \cdot 15$	35,300
Derembuer. . . .	75.	11.5	\therefore	$4 \cdot 1$	$4 \cdot 72$	16,540
Theyerar.	2,120	50	3.50	$\therefore 1$	73.10	252,600

Note.-Accuracy "A" and "C"

5 GEORGE V., A. 1915
Monthiy Discharge of Mesliloet River at C'anyon, 8 miles from Mouth, for 1912.
(Drainage area 65 square miles.)

	Month.	Discharge in Second-Feet.				Rux-Off.	
		Maximum	Minimum.	Mean	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Tota } \\ \text { in } \\ \text { acre-feet } \end{gathered}$
N wember		1,720	160	593	$9 \cdot 2$	$10 \cdot 3$	34.500
lucember		1.510	136	246	$3 \cdot 8$	$4 \cdot 4$	14,600

> Note.-Accuracy "A" and "C".
I)aily Gauge Heights and Discharges of Mesliloet River near C'anyon for 1912.

SESSIONAL PAPER No. $25 f$

Daily (iacge Heights and I)Iarharges of Tesliloet River, near Upperstation for 1913.

Day.	January.		February		March.		April.		May.		June	
	Gauge Height	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauce Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	$2 \cdot 0$	117		$\therefore 8$	$1 \cdot 6$	7-	1.7	89		210		1. 12.1.
2.	1.95	136	1.55	66		72		100	$2 \cdot 2$	195	$4 \cdot 2$	1,290
3.	1.9	12.5		tiri	$1 \cdot 6$	72	1.9	106		190		1,050
1		107	1.5.5	66		4	\cdots	147		14.0		270
j.	1.7	$8!$		63	1.7 .5	97	$2 \cdot 2$	117;	$2 \cdot 15$	180	$3 \cdot 3$	$6 \mathrm{H}_{0}$
6.	1.7	89	1.5	60	1.85	115		170		300	$3 \cdot 25$	6.30
7.		¢6		i		15.5	$2 \cdot 0$	147	$\because \cdot \square$	415	$3 \cdot 4$	720
8.		83	1.45	55		1 sis	$2 \cdot 0$	14	$3 \cdot 2$	595		M,
9.	1.65	80		55	$2 \cdot 3$	229	$2 \cdot 2$	1:15		840	$3 \cdot 25$	620
10.		8	1.45	05	$2 \cdot 1$	170			$\therefore 1$	1,080		640
11		71		52		180				950		660
12.	1.55	66	1.4	51)	$2 \cdot 1$	170	$3 \cdot 15$	565	$\therefore \cdots$	82.5	$3 \cdot 35$	690
13.		66		470		160	$2 \cdot 8$	359	$3 \cdot 2$	\therefore	$3 \cdot 4$	720
11.	1.55	\cdots		い1)		115		363		1.1	$3 \cdot 4$	720
15.		\therefore		1,300	1.95	136		337	$3 \cdot 4$	720		680
$11 i$		62	4.5	1,720		16.5	$2 \cdot 6$	311		\therefore iu	$3 \cdot 25$	620
17.	1.5)	60		1,050		14.7	$2 \cdot 6.5$	330	$2 \cdot 9$	436	$\stackrel{2}{ } \cdot 9$	436
18.		60	$2 \cdot 8$	3.9	2. 3	229	\cdots	41.7		470	2.85	415
14	1.5	-1.4	2.4	4.1	$2 \cdot 3$	292	$3 \cdot 3$	titul		510		600
20.		60		200		16.		675	$3 \cdot 1$	540	$3 \cdot 5$	790
-1	1.7	60	$2 \cdot 05$	160	1.85		$3 \cdot 35$	690		fon	$4 \cdot 0$	1,150
$\stackrel{29}{23}$	1.5	60 6.5		14.5		165 90	$2 \cdot 8$	540 359	$3 \cdot 4$	660 720	$3 \cdot 45$	755 730
24.		70		120	1.1 .5	a)	$2 \cdot 45$	265	$3 \cdot 3$	fifo		710
25.		75	1.	106		75		375		940		690
26.	$1 \cdot 65$	80		95		7.5	$3 \cdot 0$	455	4.1	1,220	$3 \cdot 3$	R, 61
27.		76	1.7	3	$1 \cdot 6$	72		437	$4 \cdot 3$	1,370	6:	59.5
28.		72	$1 \cdot 6.5$	80		100	$2 \cdot 4$:3:		1,0100		560
29.		\therefore			$1 "$	12.5		30.5	$3 \cdot 3$	\cdots	$3 \cdot 05$	520
30.	1.4,	72 72			1.,	115	23	$\because 2$		720 970		510

5 GEORGE V., A. 1915
Daily Gauge Heightis and Discharges of Mesliloet River near Upper Station
for 1913-Concluded.

Day.	July.		August.		September.		October.		November.		December.	
	$\begin{aligned} & \text { Gauge } \\ & \text { Height. } \end{aligned}$	Dis- charge	Gauge Height.	Dis-	Gauge Height	Dis- charge	Gauge	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height.	Dis-	Gauge Height	Dis-
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-fu.
12		500 595	2.3 2.3	${ }_{222}^{222}$		230 260		140	$1 \cdot 85$	100 115	2.7	347 290
3	3.0	485		222		290	1.75	98	$1 \cdot 75$	98	$2 \cdot 35$	235
$\stackrel{4}{5}$	${ }_{3 \cdot 05}$		$2 \cdot 3$	204		370	1.6	72	$2 \cdot 65$	${ }_{330}$	2.35	235
,	3.95	1,110	$2 \cdot 15$	185		410		72	$2 \cdot 55$	295		20
7	$3 \cdot 4$	720	$2 \cdot 1$	170		$451)$		72		640	$2 \cdot 45$	265
9	$3 \cdot 1$	540	$2 \cdot 1$	170	$3 \cdot 0$	485		72		980	$2 \cdot 25$	210
9.	$2 \cdot 15$	185		165	$2 \cdot 8$	389	$1 \cdot 6$	72	4.25	1,330		
10.		310		165	$2 \cdot 65$	329		400	$2 \cdot 9$	436	$2 \cdot 1$	170
11	$2 \cdot 9$	436	$2 \cdot 05$	160		260	$3 \cdot 4$	720		310		290
12		390	$2 \cdot 1$	170	$2 \cdot 2$	195	$5 \cdot 3$	2,120	$2 \cdot 15$	185	2.8	3×9
14		340		190		170	$4 \cdot 2$	1,290	1.8 .5	150		570
15	$2 \cdot 55$	295		250	1.9	125	2.7	347		550	$3 \cdot 05$	520
16		385		290	1.9	125	$2 \cdot 55$	295	3.78	990	$2 \cdot 8$	359
17.		475		330	1. ${ }^{\text {b }}$. ${ }^{\text {a }}$	115		270		600		327
19.	$3 \cdot 15$	660	$2 \cdot 6$	368 258	1.85	106		210	2.25	${ }_{210}^{210}$	$2 \cdot 45$	260 261
20.		615	2.0	147	1 - ${ }^{\text {d }}$	106	$2 \cdot 15$	185		180		190
21		570	$2 \cdot 0$	147		115		160	$2 \cdot 0$	147	$2 \cdot 0$	147
22		525	$2 \cdot 0$	147	1.0	125	$1 \cdot 95$	136	$2 \cdot 0$	147		147
23		480	$2 \cdot 0$	147	$1 \cdot 3$	106		160		1,010	$2 \cdot 0$	147
24	$2 \cdot 9$	436		136		9.5	$2 \cdot 15$	185	$5 \cdot 0$	1,880		130
25.	$2 \cdot 8$	389	1.9	125	1.7	89		150	4.7	1,650	1-8.5	115
			$1 \cdot 9$		1.7		1.85		$4 \cdot 3$	1,370		
27.	$2 \cdot 65$	320		119	1.8	106	$1 \cdot 5$	106	$3 \cdot 9$	1,050	$2 \cdot 4$	251
28	$2 \cdot 5$	280		113	$2 \cdot 65$	330		100		1,050	$2 \cdot 1$	170
29.	$2 \cdot 3$	222	1.8	106	2.2	195	1.75	98	3.8	1,010		$\because(1)$
30		222		14.5	$2 \cdot 05$	160	$1 \cdot 65$	80	$2 \cdot 9$	436		240
31.	$2 \cdot 3$	222		18.5				90			$2 \cdot 5$	2×0

NORTH LILLOOET RIVER.

Location.-Five miles from mouth of stream, in section 29, township 12, east of Coast meridian.

Records Available.-Continuous records from October 27, 1911, to December 11, 1913.

Winter Conditions.-Open water all year.
(iauge.-Tertical staff gauge on bridge pile. Daily gauge readings.
Channel.-Gravel bottom, water deep and quiet at gauge.
Discharge Measurements.-Two measurements in 1911, five in 1912, and one in 1913 show fair agreement and are well distributed except for the highest stages.

Accuracy.-Records should be quite accurate.

NOR'TH LILLOOET RIVER.

The North Lillooet river has its source in the Golden Ears mountain (5560 feet) at an elevation of 4,000 feet. It joins the south Lillooet river 2 miles from Pitt river about 20 feet above sea-level. The drainage area is about 20 ssq. miles, and precipitation varies from 70 inches at the mouth to 80 inches or more at the headwaters. The stream is open all the year round, and the winter conditions are not severe. About 5 miles above the mouth the North Lillooet

SESSIONAL PAPER No. $25 f$
is within a few hundred feet of the south Lillovet. Wien of that point both streams flow through rich bottom lands, are deep and sluggish, and at high Water often overflow the surrounding lands. Some of thea are being dyked and farmed, and are very valuahle. The upper part of the water-hed is moumtainous. A prominent peak, mount Blanchard, known lowally as the Coblen Ears, rises to an elevation of J_{s} on foet. This peak is showeramal practically all the rear round. In the upper part of the stream the hed has a very rapid fall, and during high water many trees are washed out and carried down into the flats, where they give much trouble hy ohstructing the chamel and cansing the river to overflow and sometimes even to change its course.

Near the northern boundary of tomship 12, E. C. M., there is a series of falls on the stream with a total drop of some 60 feet in about 200) rateds. I company has a water record to use water for power purposes at this point. in comection with a proposed rock quarry. The municipality of Taple Ridge plans to draw its water supply from the stream above the falls.

The station was established by C. G. Cline on October 27 1911, and gauge readings were taken continuously till December, 1918. It was loeated at the bridge on the North Lillooet river at Nibler"s hackemith shop), just below a high-water slough from the south Lillooet river, and directly north of Port Hanes. The gauge is a standard vertical staff gatue $7 \frac{1}{2}$ feet longe and is nailed to the south side of the phanking on the piling of the bridge near the right bank. It is referred to three permanent bench-marks.

Discharge Medstrements of North Lillonet River, 5 Miles from Mouth, 1911 and 1913.

Monthly Discharge of North Lillooet River, 5 miles from Mouth, for 1913.
(Drainage area, 20 square miles.)

Month.	Discharge in Second-feet.				Run-Off.	
	Maximum.	Minimum.	Mean	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
January	865	29	$77 \cdot 1$	$3 \cdot 85$	4.44	4,740
February	1,535	20	$174 \cdot 1$	$8 \cdot 70$	$9 \cdot 38$	9,660
March.	1,197	20	$118 \cdot 6$	$5 \cdot 93$	6.84	7,320
April.	470	42	$138 \cdot 1$	$6 \cdot 91$	$7 \cdot 71$	8,210
May	590	35	$151 \cdot 2$	$7 \cdot 56$	$8 \cdot 72$	9,250
June	287	50	$83 \cdot 7$	$4 \cdot 18$	$4 \cdot 66$	4,980
July	243	20	61.2	3.06	$3 \cdot 53$	3,760
August	188	14	28.4	1.42	1. 64	1,750
September	400	8	$39 \cdot 3$	$1 \cdot 96$	$2 \cdot 19$	2,340
October...	1,220	9	151.8	$7 \cdot 59$	$8 \cdot 75$	9,350
November	1,580	14	$228 \cdot 3$	11.40	$12 \cdot 72$	13,600
December.	400	42	$77 \cdot 9$	3.90	$4 \cdot 50$	4,790
The year.	1,580	8	111.0	$5 \cdot 54$	$75 \cdot 10$	79,800

Daily Gauge Heights and Discharges of North Lilloet River 5 miles from Mouth, for 1913

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge
	Feet.	Sec. ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft
1.	$3 \cdot 7$	123	$3 \cdot 0$	42	$2 \cdot 6$	20	$3 \cdot 1$	50	3.0	42	$4 \cdot 0$	188
2	$3 \cdot 4$	81	$3 \cdot 0$	42	$2 \cdot 7$	24	$3 \cdot 0$	42	$2 \cdot 9$	35	$3 \cdot 7$	123
3	$3 \cdot 4$	81	$3 \cdot 0$	42	$2 \cdot 7$	24	$3 \cdot 0$	42	$2 \cdot 9$	35	$3 \cdot 5$	93
4	$3 \cdot 2$	59	$2 \cdot 9$	35	$2 \cdot 7$	24	$3 \cdot 0$	42	$3 \cdot 0$	42	$3 \cdot 5$	93
5.	$3 \cdot 4$	81	2.9	35	$2 \cdot 8$	29	$4 \cdot 0$	1.85	$3 \cdot 0$	42	$3 \cdot 2$	59
6	$3 \cdot 0$	42	$2 \cdot 8$	29	$3 \cdot 2$	59	$3 \cdot 9$	163	$3 \cdot 5$	93	$3 \cdot 1$	50
7.	$3 \cdot 0$	42	$2 \cdot 8$	29	$3 \cdot 4$	81	$3 \cdot 5$	93	$3 \cdot 4$	81	$3 \cdot 4$	81
4	2.9	35	$2 \cdot 8$	29	$3 \cdot 5$	93	$3 \cdot 2$	59	$3 \cdot 7$	123	$3 \cdot 4$	81
9	2.9	35	$2 \cdot 8$	29	$3 \cdot 4$	81	$3 \cdot 2$	59	$4 \cdot 2$	243	$3 \cdot 2$	59
10.	2.9	29	$2 \cdot 8$	29	$3 \cdot 3$	69	$3 \cdot 4$	81	$4 \cdot 0$	188	$3 \cdot 1$	50
11.	$2 \cdot 8$	29	$2 \cdot 8$	29	3•2	59	$4 \cdot 0$	188	$5 \cdot 2$	590	$3 \cdot 1$	50
12.	$3 \cdot 8$	29	$2 \cdot 7$	24	$3 \cdot 1$	50	$4 \cdot 2$	243	$4 \cdot 7$	400	$3 \cdot 4$	81
13.	$2 \cdot 8$	29	$2 \cdot 6$	20	$3 \cdot 0$	42	$3 \cdot 8$	141	$4 \cdot 2$	243	$3 \cdot 2$	59
14	$3 \cdot 8$	29	$3 \cdot 25$	64	$3 \cdot 0$	42	$3 \cdot 6$	107	$4 \cdot 6$	36.5	$3 \cdot 2$	59
15.	$2 \cdot 8$	29	$7 \cdot 2$	1,445	2.9	35	$3 \cdot 5$	93	4.45	319	$3 \cdot 4$	81
16	$2 \cdot 6$	29	$7 \cdot 4$	1.535	$3 \cdot 4$	81	$3 \cdot 3$	69	$4 \cdot 1$	243	$3 \cdot 6$	107
17.	$2 \cdot 8$	29	$5 \cdot 65$	770	$6 \cdot 65$	1,197	$3 \cdot 3$	69	$3 \cdot 6$	117	$3 \cdot 2$	59
1.5	$2 \cdot 8$	29	$4 \cdot 2$	24.3	$5 \cdot 3$	630	$3 \cdot 7$	123	$3 \cdot 5$	93	$3 \cdot 1$	50
19	$3 \cdot 8$	29	$3 \cdot 6$	107	$3 \cdot 8$	141	$3 \cdot 2$	243	$3 \cdot 5$	93	$3 \cdot 3$	69
20.	$2 \cdot 7$	24	$3 \cdot 2$	59	$3 \cdot 6$	107	$4 \cdot 9$	470	$3 \cdot 3$	69	$3 \cdot 9$	163
21	$2 \cdot 7$	24	$3 \cdot 1$	50	$2 \cdot 9$	35	$4 \cdot 5$	335	$3 \cdot 3$	69	$3 \cdot 4$	81
22.	$2 \cdot 7$	24	$2 \cdot 9$	35	$2 \cdot 9$	35	$4 \cdot 7$	400	$3 \cdot 5$	93	$3 \cdot 4$	81
23.	$3 \cdot 0$	42	$2 \cdot 9$	35	$2 \cdot 8$	29	$3 \cdot 3$	69	$3 \cdot 5$	93	$3 \cdot 2$	59
24.	$3 \cdot 0$	42	$2 \cdot 8$	29	2.75	27	$3 \cdot 5$	93	$3 \cdot 7$	123	$3 \cdot 1$	51
25	$5 \cdot 11$	865	$2 \cdot 7$	24	$2 \cdot 7$	24	$3 \cdot 6$	107	$3 \cdot 6$	107	$3 \cdot 2$	59
26.	$4 \cdot 0$	185	2.7	24	$2 \cdot 65$	22	$4 \cdot 4$	303	$3 \cdot 9$	163	$3 \cdot 1$	51
27.	$3 \cdot 5$	93	$2 \cdot 6$	20	$2 \cdot 7$	24	$3 \cdot 4$	81	$4 \cdot 2$	243	$3 \cdot 1$	50
28.	$3 \cdot 3$	69	$2 \cdot 6$	20	2.9	35	$3 \cdot 4$	81	$3 \cdot 6$	107	$3 \cdot 1$	S1)
29.	$3 \cdot 2$	59			$4 \cdot 5$	335	$3 \cdot 2$	59	$3 \cdot 3$	69	$3 \cdot 3$	9.4
30.	$3 \cdot 1$	50			$3 \cdot 8$	141	$3 \cdot 1$	50	$3 \cdot 3$	69	$4 \cdot 35$	287
31.......	$3 \cdot 0$	42			$3 \cdot 4$	81		,	$3 \cdot 6$	107		.

SESSIONAL PAPER No. 25f
Daily Gauge Heights and Discharges of North Lillooet River, 5 miles from Mouth, for 1913.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge	Gauge Height.	Discharge	Ciange Height.	Dis. charge	Gauge H.lel.	Discharge	Gauge Height	Discharge	Gauge Heinht	Discharge
	Feet.	Sec-ft.	Feet.	Sec-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
${ }^{1}$	$4 \cdot 1$	21.5	$2 \cdot 6$	20	$2 \cdot 4$	14	$2 \cdot 4$	14	$2 \cdot 5$	17	4.7	410
$\frac{2}{3}$	3.8	141 93	$2 \cdot 6$ $2 \cdot 6$	20 20	2.4 3.9	14 163	$2 \cdot 3$ 8.2	11	2.5 2.4	17	$4 \cdot 5$ $4 \cdot 3$	33.5
4	$3 \cdot 3$	69	$2 \cdot 6$	20	4.7	400	$2 \cdot 2$	3	$2 \cdot 4$	14	$3 \cdot 2$	-9
5.	$3 \cdot 2$	5	$2 \cdot 5$	17	$3 \cdot 8$	141	$2 \cdot 2$	$!$	$4 \cdot 2$	243	$3 \cdot 1$. 0
ii	$3 \cdot 2$	59	$2 \cdot 5$	17	$3 \cdot 2$	59	$2 \cdot 2$	9	31	750	$3 \cdot 11$	42
7	$3 \cdot 2$	59	$2 \cdot 5$	17	$2 \cdot 9$	35	$2 \cdot 4$	14	$3 \cdot 5$	93	3-5	93
8	$3 \cdot 1$	50	$\because \cdot 1$	14	$\because \cdot 7$	24	$2 \cdot 4$	14	$\because 1$	81	$3 \cdot 1$. 0
9	$3 \cdot 1$	50	$2 \cdot 4$	14	\because	29	$2 \cdot 6$	20	\therefore.	152	$3 \cdot 11$	12
10.	$4 \cdot 3$	243	$2 \cdot 5$	17	$2 \cdot 7$	21	$3 \cdot 0$	42	$\therefore \cdot+$	81	$2 \cdot 8$	$\because 9$
11	$3 \cdot 5$	993	$2 \cdot 5$	17	$2 \cdot 5$	17	(i.6	1,175	$3 \cdot 1$	50	$3 \cdot 0$	42
12.	$3 \cdot 2$	59	$2 \cdot 6$	20	$2 \cdot 5$	17	6.7	1,220	$2 \cdot 8$	29		51
13	$3 \cdot 2$	559	$2 \cdot 6$	20	$2 \cdot 4$	14	$6 \cdot 7$	1,220	$2 \cdot 7$	24		S1)
12	$3 \cdot 2$	59.	$2 \cdot 6$	20	$2 \cdot 3$	11	$4 \cdot 5$	335	$2 \cdot 6$	200		$51)$
1.5	$3 \cdot 0$	42	$2 \cdot 9$	35	$2 \cdot 3$	11	$3 \cdot 8$	141	$2 \cdot 7$	24		50
16.	$2 \cdot 9$	35	$2 \cdot 6$	20	$2 \cdot 3$	11	$3 \cdot 4$	S1	6.75	1,242		50
17.	$3 \cdot 05$	46	$2 \cdot 7$	24	$2 \cdot 3$	11	$3 \cdot 0$	42	$4 \cdot 4$, 313		51
13.	$3 \cdot 0$	42	$4 \cdot 0$	188	$2 \cdot 3$	11	$2 \cdot 9$	35	$3 \cdot 4$	81		50
19.	$3 \cdot 0$	42	3.7	123	$2 \cdot 3$	11	$2 \cdot 9$	35	$3 \cdot 3$	69		511
20	$3 \cdot 0$	42	3.9	35	$2 \cdot 2$	9	$2 \cdot 8$	299	$3 \cdot 5$	93		51
21.	$3 \cdot 1$	50	2.8	29	$2 \cdot 2$	9	$2 \cdot 10$	20	$3 \cdot 0$	69	1	511
22.	$3 \cdot 0$	42	$2 \cdot 7$	24	$2 \cdot 5$	17	$2 \cdot 6$	20	$3 \cdot 1$	50		51
23.	$2 \cdot 95$	39	$2 \cdot 7$	24	$2 \cdot 3$	11	2.8	29	3.4	81		50
24.	$2 \cdot 9$	35	$2 \cdot 6$	20	$2 \cdot 2$	4)	$2 \cdot 8$	29	$7 \cdot 5$	1,5411		51
25.	2.8	29	$2 \cdot 5$	17	$2 \cdot 2$	9	2.8	29	$5 \cdot 0$	510		50
26.	$2 \cdot 8$	29	$2 \cdot 5$	17	$2 \cdot 2$	9	$2 \cdot 7$	24	$4 \cdot 6$	36.5		50
27.	2.6	24	$2 \cdot 5$	17	$2 \cdot 15$	s	$2 \cdot 6$	20	$3 \cdot 2$	59		50
28.	2.7	24	$2 \cdot 4$	14	$3 \cdot 1$	50	$2 \cdot 5$	17	4.0	188	50
29.	2.7	24	$2 \cdot 4$	14	$2 \cdot 5$	17	$2 \cdot 5$	17	$4 \cdot 5$	335		, 11
30.	$2 \cdot 7$	24	$2 \cdot 4$	14	$2 \cdot 4$	14	$2 \cdot 5$	17	4.1	215		50
31.	$2 \cdot 15$	20	$2 \cdot 4$	14			$2 \cdot 6$	20				. 30

${ }^{1}$ Estimated

NORTON CREEK.

Location.-At Norton lake, in section 10, township 7, range 7, west, of 7th meridian.

Records Available.-Continuous records since October 20, 1912.
Winter Conditions.-Very heavy snowfall, and lake freezes over, but very little ice in stream at gauging station.

Genge. - Vertical staff gauge. Gauge realings irregular, one or two a week.
Channel.-Rocky and permanent.
Discharge Measurements.-One measurement in 1912 and seven in 1913 show good agreement, and cover all except the highest stages.

Accuracy. - The infrequency of the gatuge readings will tend to impar the accuracy of the results.

NORTON CREFK.

Norton creek has its source in Norton lake, at an mevation of 2,100 feet, and discharges into Brandt reeek about a mile from its mouth, at an elevation of 1,500 feet. It is part of Burrard Inlet drainage.

The rainfall around Norton lake is something over 120 inches. In the winter there is generally a somfall of 3 or 4 feet or more. The lake freezes over, but the stream generally remains open.

25 $\mathrm{F}-9$

The Westminster Power Company proposes to include Norton lake in its high-head power development. The lake is to be used as the main storage and equalizing reservoir. Water from upper Brandt creek, Norton lake, and Belknap creek is to be diverted into Norton lake. A large dam is to be constructed at the outlet of the lake to provide storage and to regulate the entrance of water into the pipes. The main pipeline is to lead from Norton lake to a small reservoir on the hill above the power-house. From the reservoir, steel penstocks will lead down to the power-house, which is to be situated near the mouth of Brandt creek. A head of some 2,000 feet will be developed by this installation. Storage in Norton, Young, and Ann lakes will give a very uniform flow, and conserve practically all the freshet water for use during the low-water seasons.

A cabin has been constructed at Norton lake, and it is to be made the headquarters for the gauge readers. From this cabin, trails lead to upper Brandt creek, Young lake, Belknap lake, and Hixon creek. A horse trail connects the cabin with the camp in the main Mesliloet valley, and a wagon road leads from there to Burrard Inlet.

A gauging station was established on the 20th of October, 1912, by this survey on Norton creek at Norton lake. This station has been maintained since that date, but the gauge readings have been somewhat irregular as the gauge readers had their headquarters in the lower valley, and the travelling is very difficult in the winter on account of the deep snow and the steep climb. The gauging station gives the flow from Norton lake, and the total amount of the water measured by it could be used in the proposed water-power development. The transfer of the gauge readers' headquarters to Norton lake in 1914 should give more reliable results in the future.

Discharge Measurements of Norton Creek at Norton lake, 1912 and 1913.

Date.	Hydrographer.	Meter No.	Width	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1912.			Feet.	Sq.ft.	Ft. per sec.	Feet.	Sec.ft.
Oct. 20	C. G. Cline	1,046	$9 \cdot 0$	$11 \cdot 5$	$0 \cdot 64$	$2 \cdot 53$	7-58
1913.							
June 3	H. C. Hughes	1,673	$16 \cdot 0$	$16 \cdot 0$	1-12	$2 \cdot 85$	$16 \cdot 30$
" 10	do	1,673	$8 \cdot 5$	$9 \cdot 3$	1.100	$2 \cdot 60$	$9 \cdot 31$
" 24	do	1.673	8.0	$7 \cdot 5$	$0 \cdot 76$	$2 \cdot 52$	$5 \cdot 75$
July 7	do	1,673	$10 \cdot 0$	13.3	$0 \cdot 58$	$2 \cdot 53$	$7 \cdot 72$
" 23	do	1,673	$6 \cdot 0$	$6 \cdot 4$	0.27	$2 \cdot 11$	1.76
Aug. 2	do	1,673	$6 \cdot 0$	$5 \cdot 15$	(). 10	1.85	11.50
Sept. 23	F. MacLachlan	1,673	$3 \cdot 5$	1.95	0.93	$2 \cdot 06$	${ }^{1} 1.82$

[^5]
SESSIONAL PAPER No. 25f

Monthly Discharge of Norton Creak below Norton lake for 1913.

Note.-Accuracy "A" and "C".

Monthly Discharge of Norton Creek below Norton lake for 1912.
Month.
November
Inecember

[^6]5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Norton Creek at Norton lake for 1912.

SESSIONAL PAPER No. $25 f$

Daily Gauge Heigits and Dincharges of Norton Creek near Norton lake for 1913.

Daily Galge Heights and Discharges of Norton Creek near Norton lake for 1913-Concluded.

RAINBOW CREEK.

Location.-Below falls, near mouth, in section 18, township 6, range 4, west of 7 th meridian.

Records Available.- C'ontinuous records from November 1, 1912, to November 31, 1913.

Winter Conditions.-Open water all season.
Gauge.-Vertical staff gauge-gauge readings about once a week.
Channel.-Permanent rocky channel.
Discharge Measurement.. - Two measurements in 1911, two in 1912, and two in 1913 show good agreement, and cover all but the highest stages.

Accuracy.-The infequency of the guage readings will tend to impair the accuracy of the results.

RAINBOW CREEK.

Rainbow creek has its source in the mountains on the east side of Pitt lake, outside the Railway Belt, at an elevation of 2.000 feet, and discharges into Pitt lake at an elevation of 10 feet. It is part of the Pitt-Fraser drainage. The drainage area is estimated at 20 square miles and the ammal precipitation at about 70 inches. The watershed of Rainhow creek is comparatively high, rocky, and wooded, with snow most of the year in the higher altitudes.

SESSIONAL PAPER No． $25 f$
It would be possible to develop power on Rainbow creek，there being a 630－ foot fall in half a mile near the mouth．There is said to be a lake near the headwaters which might be utilized as a storage reservoir．There is a small flat at the mouth which would provide plenty of room for a power－house．

The gauging station on Rainbow creek was established on November 11， 1911，by C．G．Cline，and a year＇s records have been obtained．It is about 2 miles above Goose island，on the east side of Pitt lake．The gauge is a vertical staff， 7 feet long，and is fastened to a stump， 100 feet helow the high fall，and 300 yards from the mouth of the creek．The datum of the gauge is referred to three bench－marks．Measurements are made by wading，except at high water，when a boat is used．The station is just at the edge of a pool at the bottom of the fall．

Discharge Measurements of Rainbow Creek below falls，1911，12， 13.

Monthly Discharge of Rainbow Creek near mouth for 1912.

	Month．	Dincharge in Second－Feet．			Run－Off．
		Maximum，	Minimum．	Mean．	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
November Ineromber		$\begin{aligned} & 133 \\ & 158 \end{aligned}$	$\frac{38}{62}$	$\begin{array}{r} 75 \cdot 6 \\ 101 \cdot 0 \end{array}$	$\begin{aligned} & 4.495 \\ & 6.210 \end{aligned}$

Monthly Discharge of Rainbow Creek at mouth for 1913.
（Drainage area， 20 square miles．）

Month．	Discharge in Second－Feet．			Run－Off．		
	Maximum．	Minimum．	Mean．	Per square mile．	Depth in inches on I）rainage area．	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
January	121）	34	．1．1	$3 \cdot 02$	31	3.710
February	123	34	81	3.5	$3 \cdot 6$	$\therefore \times 14$
Mareh	133	11	79.0	3.95	18	1，ज1
April	14.5	tis	151	4.75	$\therefore \cdots$	\therefore 仿 1
II：	450	210	249	14.4	1－i．1；	17． 1111
June．	4.56	265	29	14.9	1，1；	17.800
July	225	11%	159	\bigcirc	411	9，880
August	引い！	（1）	1：	－ 11	$9 \cdot 11$	9，720
September	560	62	1.6	－ 1.5	3． 4.3	10，096）
（）etober	930	30	259	12 6	$14:$	15．974
November．	P年	160	546	$27 \cdot 3$	311.5	32，500

Note．－Accuracy＂B＂．

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Rainbow creek near Mouth for 1912.

SESSIONAL PAPER No. 25 f
Daily Gauge Heights and Discharges of Rainbow Creek near mouth for 1913.

Day.	January		February.		March.		April.		liay.		June.	
	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-fy	Feet.	Sec.ft.	Feet.	Sec.-ft.
1		120	$0 \cdot 7$	37	1.2	91		\therefore		210	2.4 .5	456
3.		100		36	1.2	92		60		225 235		429 4119
4		90		36		85		\% 11	1.3 .3	251		475 375
5.	1.1	81		36		$\therefore 1$		75		258		350
6.		74		35	.	80	$1 \cdot 1$	81		28.5		320
7		67		35		76		7		272		295
6		til		31		72		73		279	$1 \cdot 9$	267
9		55	11.16	34	$1 \cdot 0$	67		85		286		270
10.		$4!$		47		7.		62		293		272
11.		4.3		(i)		83		57	$2 \cdot 1$	301		275
12.	1.7	37		73		41		53		20.7		277
13.		37		86		99		49		291		279
14.		37		100		107	11.5	46		285		282
15.		36		112		115		$\therefore 3$		280	1.95	284
16.	. . ${ }^{\text {r }}$	36	$1 \cdot 35$	123	$1 \cdot 4$	133		65		275		281
17.		35		11.5		122		75		2-11		2%
18.		35		107		111		9	$1 \cdot 4$	267		275
19.	0. 6.5	34		99		101)		95		259		272
20.		37		91	\cdots	39	1.25	105		311		270
21		411		83		78		112		333	$1 \cdot 9$	267
22.		43		75		67		119		33.5		269
23.	0.5	46	$1 \cdot 0$	$5{ }^{5}$	$0 \cdot 9$	56		126		377		$\because 1$
24.		6.3		71		53		1,3;	$2 \cdot 3$	410		273
25.		3.1		75		$5)$		140	$\because 3.5$	422		275
26.	1.2	96		79		48		$1: 7$		425		277
27.		Sif		83		46	1.5	18.		430		279
28.		Ti)		57		43		170		435		231
29.	- -	嫁			$0 \cdot 75$	41		1.5		441	1.95	234
30.		56				45		195		44.5		279
31.		$4 t_{1}$				50				450		

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Rainbow Creek near Mouth for 1913-Concluded.

Day.	July		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.	Gange Height	Discharge.	Gauge Height	Discharge.	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec. ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.		255	1.3	113		267		60		160		
2		240		106		339		53		190		
3.		225		99		411		47		220		
4		210		92		483		38		250		
5		195		94	$2 \cdot 75$	560	$0 \cdot 6$	30		270		
3	$1 \cdot 6$	180		77		444		16.5		300		
7.		167		69	$2 \cdot 05$	318		300		320		
8		153		61		272		435		350		
9.		138		54		237		570	$2 \cdot 2$	370		
10.	1.35	123	0.8	46		202		- 705		410		
11.		130		10.5		167		840		450		
12.		139		155		132	$4 \cdot 0$	990		490		
13		146		205		97		820		530		
14		154		255	0.95	62		670		570		
15.		160		305		62		520		600		
16.	1.55	167		355		62		370	$3 \cdot 0$	646		
17.		165	$2 \cdot 3$	404		62		220		700		
18		162		360		62	$1 \cdot 0$	67		750		
19		160		320		62		67		800		
20.		157		280		62		65		850		
21.	1.5	155		240	$0 \cdot 93$	62				900		
22.		15.3		200		65		62		950		
23.		148		150		68		60	$4 \cdot 0$	990		
24.		145	1.2	96		71		58		910		
25.		141		87		74		56		820		
26.		137		78		76		54		730		
27.	1.4	133		69		78		52		630		
28.		129		60	$1 \cdot 1$	81	$0 \cdot 85$	51		520		
29.		125	0.85	51		74		80		400		
30.		120		123		67		110	$2 \cdot 05$	318		
31.		117		195				140				

RAVEN (RUSHTON) CREEK.
Location.-Below canyon near mouth in section 18, township 5, range 4, wesc of 7 th meridian.

Records Available.-Continuous records from November 3, 1912, to November, 30, 1913.

Winter Conditions.-Open water all season.
Gauge.-Vertical staff gauge. Three readings a week.
Channel.-Permanent rocky channel.
Discharge Measurements.-One measurement in 1912 and four in 1913 show good agreement but do not cover the higher stages.

Accuracy. - The infrequency of the gauge readings and the absence of a flood measurement will tend to impair the accuracy of the work.

RAVEN (RUSHTON) CREEK.

Raven (or Rushton) creek rises in Rushton lake at an clevation of 700 feet, and discharges into Pitt lake on the east side opposite Goose island, at an elevation of about 10 feet. It is part of the Pitt Fraser dramage. The watershed is in the Coast district, with a mean ammal precipitation of something like 60 inches. The stream does not freeze over at the mouth, but in the higher altitudes the winter conditions are more severe.

SESSIONAL PAPER No. $25 f$
Mr. E. J. Fader, of New Westminster, proposes to develop power on Rushton creek. Rushton lake is 700 feet above Pitt lake and only three quarters of a mile distant. Below the lake there is a fall of about 100 feet high, and only one quarter mile from Pitt lake. The water is to be diverted above the fall and convered in a flume and pipeline to the power-house near Pitt lake. Rushton lake could be used for storage. The power is to be used to run a quarry and gravel-screening plant.

A gauging station was established on Rushton ereek on November 3, 1912, and gauge readings were taken three times a week for a year. There is a vertical staff gauge just at the lower end of the canyon below the fall, and one quarter mile from Pitt lake. The meter measurements are made by wading at a section 100 feet below the gauge. During the season of 1913 sufficient meter measurements were taken to locate the rating curve.

Discharge Measurements of Raven (reek (Rushton) near Mouth 1912 and 1913.

	Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Itean Velocity.	Gauge Height	Discharge
	1912			Feet.	Sq.ft.	Ft. per sec.	Feet.	Sec.-ft.
Nov	3	C. G. Cline.	1046	32	54	$1 \cdot 2$	$2 \cdot 18$	63.6
\1ay	$\begin{array}{r}1913 \\ \hdashline 1\end{array}$	C. G. Cline	1044	32	67	$2 \cdot 0$	$2 \cdot 57$	
Juls	16.	K. G.C. \& C G C	1055	30	52	0.9	- 112	46.
Sept.	17.	K. C. Chisholm...	1055	15	27	0.8	1. 69	$20 \cdot 9$
Oct.	26.	H.J.E.Keys...	1057	30	4.	(1).i)	$1 \cdot 80$	$25 \cdot 0$

Monthly Discharge of Rushton Creek near Mouth for 1912.

Monthly Discharge of Raven (Rushton) Creek near Mouth for 1913.

	Month.				Rux-off.
		Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
January.				15.9	977
February. March		140 129	13 17	$\begin{array}{r}42.7 \\ 4.2 \\ \hline\end{array}$	2.370
April.		1411	1.5	-	3.340
May		159	31	414	5.31"
June.......		16i)	27	76.4	4,550
July........				$40 \cdot 0$	264
Ausu-t.		1.	7	$42 \cdot 1$	\cdots
Serptember		(12)	${ }_{8}^{8}$	86.1	5. 120
November.		(1)	113	120.11	12,010010

Raven Creek near Metering Station.

Raven Creek-Gravel Deposits at mouth.
Daily Gayge Heights and Discharges of Raven (Rushton) ('reek near Mouth for 1912.

	Day.	November.		December.	
		Gauge Height	Discharge	Gauge Height.	Discharge.
1		Feot	Nec. ft . 80	Fert.	Sce.-ft. 29
2			$4)$	1.9	35
3.		$2:$	80		60
4			$\therefore i$	$2 \cdot 3$	80
5.		$2 \cdot 4$	1101		55
6.			41	1.85	31
7.		$\because 2$	1i.)		24
8.			8		25
9.		$\because 11$	4.5	1.7	21
10.			75		20
11		$\because 1$	100	$1 \cdot 1.5$	19
1%.			125		23
14.		21.5	150	1.8	27 35
1.5		2.8	80		42
16.			1111	$2 \cdot 05$	S
17.			1211		5.
18.		$2 \cdot 1 ;$	141	$2 \cdot 2$	65
19.			121		87
20.		$2 \cdot 4$	1010	$2 \cdot 10.5$	50
21.		4814	-i		44
22.			30		415
23.		$\because 105$	31	$2 \cdot 11$	4.5
24.			35		5.5
$\because 9$		1.	27	$2 \cdot 2$	6.5
26.			23		73
27.		1-1.is	19	$\because ;$	$\square 1$
23.			17		75
29.		1.5.	1.		71
30.			22	2. 2	8.5
31.					8.)

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Raven (Rushton) Creek Canyon near Mouth for 1913.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height	Dis- charge	Gauge Height.	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.										
1	$3 \cdot 05$	50		16		17		55		55		150
2	$1 \cdot 85$	40 31	1.80	$\stackrel{22}{27}$	$1 \cdot 30$	22	$2 \cdot 20$	65	$2 \cdot 40$	55 100	2•70	160 140
4	1.8	26		24	1	22	$2 \cdot 10$	55		85	2.50	120
5		21	$1 \cdot 70$	21	$1 \cdot 60$	17		50	$2 \cdot 20$	65		105
6	$1 \cdot 60$	17		18		20		45		55	$2 \cdot 35$	90
7		15	1.55	15	$1 \cdot 75$	24	1.95	40		45		100
8	1.50	13		16		27		30	1.85	31		110
9		12		16		31	1.70	21		56	$2 \cdot 15$	120
10.	$1 \cdot 40$	10	1.60	17	$1 \cdot 90$	35		18	$2 \cdot 30$	80		100
11.		9		19		31	1.55	15		115	$2 \cdot 30$	80
12		8	$1 \cdot 70$	21	$1 \cdot 80$	27		17	$2 \cdot 65$	150		62
13.	$1 \cdot 20$	7		50		24		19		110	$2 \cdot 00$	45
14		7	$2 \cdot 30$	80	$1 \cdot 70$	21	$1 \cdot 70$	21	$2 \cdot 25$	72		42
15.	$1 \cdot 10$	6		100		40		24		80		39
16		5		120		60	$1 \cdot 80$	27	2. 2.5	90	$1 \cdot 90$	35
17.	$1 \cdot 05$	5	$2 \cdot 60$	140	$2 \cdot 30$	80		33		81		47
18		6		110		100	$1 \cdot 95$	40		73	$2 \cdot 15$	60
19.		6	$2 \cdot 30$	80	2.50	120		48	$2 \cdot 20$	65		90
20.	$1 \cdot 20$	7		60		100		56		82	$2 \cdot 00$	115
21		8	$2 \cdot 00$	45	$2 \cdot 30$	80	$2 \cdot 20$	65	$2 \cdot 40$	100		65
22	$1 \cdot 30$	8		40		65		78		110	$1 \cdot 80$	27
23		15		35		40	$2 \cdot 35$	90		120		36
24	1.80	27	$1 \cdot 85$	31	$1 \cdot 90$	35		100	$2 \cdot 55$	130		45
25		26		25		28	$2 \cdot 45$	110		120	$2 \cdot 10$	55
26		25	$1 \cdot 65$	19	$1 \cdot 70$	21		12.5		110		45
27	1.75	24		16		28	$2 \cdot 60$	140		100	1.90	35
28.		20	$1 \cdot 50$	13	$1 \cdot 90$	35	$2 \cdot 45$	110		90		50
29.	$1 \cdot 55$	15				38		80	$2 \cdot 30$	80	$2 \cdot 25$	70
30.		12				42	$2 \cdot 00$	45		110		55
31.	$1 \cdot 40$	10			$2 \cdot 00$	45			$2 \cdot 60$	140		

SESSIONAL PAPER No. $25 f$
Daily Gayge Heights and Discharges of Rayen (Rushton) (reek ('amyon near Mouth for 1913-Concluded.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge	(rature Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height	Discharge
	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet	Sec.-ft.	Feet.	Sec-ft.	Feet.	Sec. ft .
1	$2 \cdot 00$	4.5	$1 \cdot 80$	27	$2 \cdot 20$	65	1.510	$1:$		21		
$\frac{2}{3}$	$2 \cdot 25$	60 72	1.71	218	$3 \cdot 90$	345 620	$1 \cdot 65$	16 16	1.70	21		
\pm	$2 \cdot 2$	60	1.0	10	$3 \cdot 90$	420	$1 \cdot 6.5$	16	1.80	22		
3		50		17	$3 \cdot 15$	22.5	$1 \cdot 51$	13		73		
18	1.94)	35	1.55	1.5		195		50		127		
\bar{i}		32	1.50	14	$2 \cdot 50$	120		90	$2 \cdot 411$	1110		
4		29	1.50	13		1119	$2 \cdot 55$	130		200		
\% 10.	1.4()	27 24 24	$1 \cdot 30$	11	$2 \cdot 0.5$	75 50 5	4.50	315 $3(10)$	3.00	225 160		
11	1.711	21		13		35		610		1111		
12		27		18	1.71	21	4.90	620	$2 \cdot 00$	4.5		
13		33	1.50	27		17		420		43		
14		40		. 5.	1.45	12		200	1.45	40		
15		45	$3 \cdot 30$	80		17	$2 \cdot 25$	72		220		
16	$2 \cdot 05$	50		130		22		62	$3 \cdot 80$	390		
17		53	$2 \cdot 30$	185	$1 \cdot 80$	27		54		ここ!		
1	$2 \cdot 11$	5.5		150		22	$2 \cdot 00$	45		1.11		
$1!$	$2 \cdot 20$	6.5		110	$1 \cdot 60$	17		38	$2 \cdot 00$	4.5		
21		55	$2 \cdot 30$	s0		15		31		On		
21	$2 \cdot 00$	45		60	1.53	13		24	$\underline{2} \cdot 10$	55		
2?		40	$1 \cdot 90$	35		1.7	$1 \cdot 60$	17		330		
23.	1.90	35		30		17		20	4.910	620		
24.		29	1.71	21	1.6.)	19		22		580		
25.	1.75	24		19		15		24	$4 \cdot 30$	495		
26.		30		16	1.30	8	1.41	27		420		
27.	1.90	35	1.50	13		10		2.5	$3 \cdot 60$	350		
28		33		10	1.45	12	1.75	24		300		
29.		32	1.25	7		12		23		250		
30.	1.85	31 29		47		13		22	$2 \cdot \square$	195		
31.		29					1.70	21				

SILVER HOPE CREEK.

Location.-This stream is measured in two branches, and the results are combined to give the total discharge. The stations are located near the highway bridges near the mouth of the stream in section 5 , township 5 , range 26 , west of 6 th meridian.

Records Available.-Continuous records from December 11, 1911, to December 11, 1913.

Winter Conditions.-Open water all season.
Gauge.-Vertical staff gauges-daily readings.
Channel.-Permanent rocky channels. water swift at higher stages.
Discharge Measurements.-Some half a dozen measurements on both branches show a fair agreement and cover most stages of the two branches.

Accuracy.-Fair.

SILVER HOFE CREEK.

Silver Hope creek has its source in the mountains 15 miles south of Hope at an elevation of from $t w o$ to thee thousand feet and diseharges into the Fraser river near Hope at an elevation of about 100 feet. It is part of the Fraser river drainage; the drainage area, as measured from a Dominion sectional map, scale 3 miles to 1 inch, is 80 square miles. The precipitation varies from 50
inches at the mouth to 80 inches or more in the upper section of the watershed, where the winters are severe, with much snow. At present a very small amount of water from this creek is used for irrigation; there is some good land along the Fraser near the mouth of the creek, but with that exception there is little agricultural land in the Silver Creek valley, and none is taken up. The hillsides are very steep, which tends to give a rapid run-off, with small loss by evaporation and seepage. The creek is swift, with many rapids, but the fall is uniformly distributed through its whole length.

The creek is fairly well controlled by Silver lake, about 5 miles from the mouth of the creek, at an altitude of 1,100 feet. The lake has an area of 160 acres, and would afford a suitable reservoir for power development. But this stream is a poor power proposition when compared with others in the same district still undeveloped.

Attempts have been made to build a railroad up the valley, but the grade was found to be too steep. The Pacific highway, however, is now being built through the valley, and will give easy access to this district, which is unrivalled in its primitive beauty.

In establishing a gauging station on Silver Hope creek, it was found most convenient to locate the station at a point where an island divides the creek into two channels. This necessitated the use of two gauges, one on each branch. The sum of the discharges of the two branches represent the total flow of Silver Hope creek. The station was established November 17, 1911, by C. G. Cline, and gauge readings were taken regularly till December, 1913, giving two years records. It is located one half a mile from the mouth, and one quarter of a mile above the C.N.R. bridge. Vertical staff gauges are located on both branches; on the left branch the gauge is fastened to the left abutment of the highway bridge on the upstream side; on the right branch the gauge is fastened to a tree on the right bank 100 feet below the highway bridge. The measuring section on the right branch is 5 feet below the gauge; a tree was felled across the stream, and cable measurements are taken from it. The measuring section on the left branch is at the bridge during high water, when cable measurements are made; during lower water, wading measurements are made 100 feet below the bridge.

SESSIONAL PAPER No. 25f
Discharge Measurements of Silver Hope River at Mouth 1911-13

	Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	(i.uare Height.	Discharge.
				Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Dec.	11.	\therefore mith	1057	43	$57 \cdot 1$	$3 \cdot 4$	$2 \cdot 40$	196
	1912							
Mar.	1..	C. G. Cline	1046	35	7	1.94	$1 \cdot 90$	146
June	7..	do	1046	46	127	6.02	$3 \cdot 50$	765
Sept.	17.	do	1046	411	61	1.76	1.73	108
Nov.	19..	do	1048	46	1:3	$4 \cdot 86$	$3 \cdot 35$	652
Dec.	7..	do	1048	40	$\therefore t$	$2 \cdot 37$	$2 \cdot 25$	199
	1913							
May	16.	do	1044	417	124	$4 \cdot 54$	$3 \cdot 18$	563
Sept.	10.	K. G. Chisholm	1044 1055	30 30	141 99	6.59 3.28	$4 \cdot 00$ $2 \cdot 77$	930 324
		L-ff Braneh.						
	1911							
Dec.	11.	Smith.	1057	41	$52 \cdot 2$	$3 \cdot 1$	$1 \cdot 00$	177
	1912							
Mar.JuneSept.Nov.		$\begin{aligned} & \text { C. G. Cline } \\ & \text { do } \\ & \text { d. } \\ & \text { d. } \\ & \text { do } \end{aligned}$		311	$55 \cdot 7$	-97		54
			1046	41	$82 \cdot 0$	$4 \cdot 1$	1.70	335
	17		1046	34	$30 \cdot 5$	- 83	$0 \cdot 20$	25
	19		1048	41	(ij-1	$3 \cdot 38$	$1 \cdot 35$	216
Dec.			1048	39	37	$1 \cdot 16$	0.48	43
	1913							
May	16.	C. G. Cline	1014	4.5			$1 \cdot 35$	214
July	22.	K. G. Chisholm.	1055	40	$75 \cdot 7$	$3 \cdot 62$	$1 \cdot 45$	275
July	23.		1044	40	82.5	$4 \cdot 29$	$1 \cdot 62$	354
Sept	10.		10.55	52	$50 \cdot 2$	1.76	$0 \cdot 71$	85
Oct.	14.	H. J. E Keys..	1057	39	$45 \cdot 7$	$3 \cdot 4$	$1 \cdot 20$	178

Monthly discharge of Silver Hope Creek Island, near mouth, for 1913.
(Drainage Area 80 Square Miles.)

Mositif.	Discharge in Second-Feet.				R(V) - Off	
	Maximum.	Minimum.	Mean.	Per Square. Mile.	Depth in inches on 1) rammare Area.	$\begin{gathered} \text { Tota. } \\ \text { in } \\ \text { Acre-feet. } \end{gathered}$
Janaras	281	124	1.6 if	$2 \cdot 12$	$2 \cdot 44$	10,000
February	1,277	126	27.4.9	$3 \cdot 11$	3 S	15,300
March	33')	165	$213 \cdot 9$	$2 \cdot 67$	$3 \cdot 08$	13,200
Apral	910	$1 \cdot 1$	18.1	$5 \cdot 39$	$13 \cdot 1$	26,600
May.	1,950	309	1,049.5	1:1	$1.5 \cdot 111$	64.500
June	3,050	1,155	1,763.5	23:	24-50	10.3,000
July.	1,555	itil	1,048.4	13.1	1.2.11	62,500
	621	236	38.3 .6	4.79	$5 \cdot 52$	23, 600
September.	1,390	\because	39.54	1.91	$5 \cdot 51$	23,500
October.	3,000	161	$8.37 \cdot 9$	7.98	119	39,200
November	2,375	222	5,57.7	6.97	7.	33.100

[^7]5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Silver Hope Creek Island near mouth for 1913.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.										
1		215		161		184		184		377		2,355
2		215		153		176		168		357		2.675
3		240		150		165		168		333		3, 0.50
4		220		140		165		161		333		2,830
5		192		133		176		172		309		2,030
6		180		132		176		172		333		1.653
7		180		139		200		172		425		1,960
8		180		132		226		172		756		2.040
9		172		129		250		172		1,515		1,850
10	-	161		126		269		192		1.325		1,535
11		161		126		269		316		1.138		1,575
12		155		126		257		578		1,091		1,645
13		200		126		22.5		650		1.020		2.050
14		281		126		250		5.5		874		1.505
15		161		165		220		5.5		829		1,390
16		15.3		813		210		49.5		769		1,390
17		124		1,227		288		515		741		1,290
18		124		744		330		378		701		1,155
19		133		$50:$		276		800		843		1,645
20		135		404		225		800		874		2.295
21		124		356		210		910		874		1,695
22		128		300		210		859		1,138		1,515
23		133		262		200		61.3		1,747		1,515
24		128		235		196		515		1,950		1.447
25		158		210		184		49.5		1.927		1,390
26.		192		200		154		555		1,815		1,390
$27 .$		168		185		184		555		1,9.50		1,430
28.		158		188		184		49.5		1,657		1,515
29.		165				168		439		1.370		1,390
30.		161		.		180		401		1.370		1,390
31.		161		\ldots. .	\cdots	196				1,792	-	1,

SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of Silver Hope Creek Island near mouth for 1913-Concluded.

SILVER PITT CREEK.
Location.-At lower end of canyon, about 2 miles from mouth of creek, in section 8 , township 4 , range 5 , west of 7 th Meridian.

Records Available.-Continuous since August 9, 1912.
Winter Conditions.-Open water all season.
Gauge.-Vertical staff gauge, readings three times a week.
Discharge Measurements.-One measurement in 1912 and five in 1913 show fair agreement.

Accuracy.-Records are not as reliable as though readings had been taken daily.

SILVER PITC CREEK.

Silver Pitt areek rises in the hills between ('oquitlam lake and litt lake at an elevation of about 3000 feet; and flows from the west into Pitt river near Pitt lake at an elevation of 10 feet. It is part of the Pitt-Fraser drainage. About 3 miles from its mouth the stream flows out through a canyon on to a flat where it has numerous branches and frequently changes its chamels. In the last mile of its course it forms a slough in which the water rises and falls with the water in Pitt river under the influence of the tides.

$$
25 \mathrm{~F}-10 \frac{1}{2}
$$

There is a considerable extent of good agricultural land in the flat near the -nouth. Much of this land, however, is frequently flooded by the freshets in Silver creek and submerged by the high water in Pitt river. The homesteaders are planning to combine to have the land dyked and drained.

The watershed is in the Coast district, with a mean annual precipitation of about 80 inches. The stream does not freeze over near its mouth in the winter, but near the headwaters the winter conditions are more severe.

The Municipality of Coquitlam is preparing to install a waterworks system which will draw its water supply from this stream near the canyon mentioned above.

A gauging station was established on Silver Pitt creek on August 9, 1912, and gauge readings are being taken about three times a week. The station is at the lower end of the canyon and measures the whole flow of the stream. The gauge is a 6 foot vertical staff nạiled to the upstream side of a 16 inch hemlock tree on the left bank of the stream. The meter measurements are made by wading at a section 5 feet above the gauge. A cable has been installed for use in high water. There is a deep pool in the canyon above the station, and there are rapids below.

Discharge Measurements of Silver Pitt Creek, Mouth of Canyon 1912-13

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height	Discharge.
1912			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Aug. 9	C. G. Cline.	1,046	65	104	$2 \cdot 39$	1.50	249
1913							
May 25.	C. G. Cline....	1,044	610	121	$3 \cdot 05$	$2 \cdot 15$	369
July 15.	K. G. Chisholm.	1,055	62.5	100	1.83	1.41	184
Sept. ${ }^{\text {Sent. }}$		1,055	57	68	1.27	0.87 0.80	92
Oct. 25	H. J.E. Keys.	1,057	61	73.5	$1 \cdot 60$	0.99	116

Monthly Discharge of Silver Pitt Creek, Mouth of Canyon for 1913.

Month.	Discharge in Second-Feet.				IRun-Off.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
January	125	84	34	$1 \cdot 34$	1.54	5,780
February..	251	51	111	$1 \cdot 57$	1.f4	6,160
March	175	90	11.3	1.51	1-86	6,950
April.	33.5	100	250	$3 \cdot 57$	3. 9.4	14,900
May.	563	278	347	4.46	$5 \cdot 72$	21,300
June	42 S	119	286	$4 \cdot 119$	4.56	17,000
July.	322	117	221	$3 \cdot 15$	$3 \cdot 63$	13,600
August	461	45	164	$2 \cdot 32$	2.67	10,000
September.	884	4.5	214	$3 \cdot 05$	$3 \cdot 41$	12,700
Oetober...	1,023	4.5	212	3.46	3.99	14,900
November	973	105	343	4.97)	$5 \cdot 47$	20,400
December.	428	100	223	$3 \cdot 19$	$3 \cdot 68$	13,700
The year...	1.023	4.5	217	$3 \cdot 10$	$42 \cdot 15$	157,400

[^8]
SESSIONAL PAPER No. 25 f

Monthly Discharge of Silver Pitt Creek, Mouth of Canyon for 1912.

Moxtre.	Discharge int Second-Feet.				Ron-Off.	
	Maximum.	Minimum.	Me:n.	Per square mile.	Depth in inches Drainage area.	Total in acre-feet.
September..	262	1.5	8.8 .1	$1 \cdot 26$	$1 \cdot 41$	
October...	362	35	$135 \cdot 2$	1.93	$2 \cdot 22$	8.: 60
November...	85.3	109	$322 \cdot 0$	4.59	$5 \cdot 12$	19, $16^{\prime \prime}$
December.	285	90	112.5	$2 \cdot 03$	$2 \cdot 34$	1,8,730

Note.-Accuracy "B" and "C".

Daily Gauge Heights and Discharges of Silver Pitt River near Mouth of Canyon for 1912.

	Day.	August.		September.		October.		November.		December.	
		Gauge Height.	Discharge.	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	Discharge	Gauge Height	Discharge
		Feet.	Sec.-ft.								
$\frac{1}{2}$					170 215 15	$1 \cdot 1$	105 135		114		133
${ }_{3}$				1.7	$2{ }_{2}$	$1 \cdot 1$	115		2100		145 157
4.					237		95	1.5	218	$1 \cdot 3$	17.5
5.					21.5	0.7	70		338	1.11	117
6.					197		${ }^{1} 1$	$2 \cdot 4$	461	$0 \cdot 9$	100
7.				$1 \cdot 3$	175		58		370		$1(0)$
9					153		52	$1 \cdot 3$	270		100
10°		1.7	262		100	$0 \cdot 5$	4.	$1 \cdot 3$	${ }_{270}^{175}$		130 160
11.		1.4	196	$0 \cdot 8$	84		39	$2 \cdot 1$	362		190
12.		0.8	4		75	$0 \cdot 4$	35		(iir		220
13.		11.5	4.5		66		35	$3 \cdot 6$	-		250
14.			55	(1) 6	57		35		(2)	$1 \cdot 8$	285
15.			6.5		52	1.4	35		(u)1	$1 \cdot 25$	16.5
16.			75		47		55	1.3	175	$1 \cdot 3$	
17			85		42		73		25.5	$1 \cdot 1$	113.7
18.		10.9	100	$0 \cdot 4$	35		!15		33.		135
19.			4		32	$1 \cdot 0$	117		41.5		135
20.			i6		29		177	2.5	491		135
21.		$0 \cdot 6$	57	$0 \cdot 3$	2.5		237		46.4		1:6
22.			52		23		4		421		117
23.			47		21	$2 \cdot 1$	3is	$2 \cdot 1$	362		117
24.			42		19		\%		312	$1.1)$	117
25.		$0 \cdot 4$	35	$0 \cdot 2$	15		322		262	$0 \cdot 5.5$	90
26			35		1.)	1.9	308		212	1.11	117
27.			35		1.5		25.	$1 \cdot 1$	135		117
28.			35	$0 \cdot 2$	1.5		\because	1.0	117		117
29.		$0 \cdot 4$	3.5		45		1.-	0.95	119		117
30.			80		75	$0 \cdot 9$	100		121		120
31			125				124				120

5 GEORGE V., A. 1915
Dally Galge Heights and Discharges of Silver Pitt River near Mouth of Canyon for 1913.

SESSIONAL PAPER No. 25f
Daily Gauge Heights and Discharges of Silver Pitt River near Mouth of Canyon for 1913.

SOUTH LILLOOET RIVER.
Lonention. At upper highway hridge. 8 miles from mouth, in section 28 , township 12, east of Coast meridian.

Records Available.-Continuous since October 26, 1911.
Winter Conditions.-Open water all season.
Gauge.-Chain gauge on bridge. Gauge readings daily.
Channel.-Permanent rocky channel.
Discharge Mensumements. Two meaturements in 1911, four in 1912, and two in 1913 show good agreement and cover practically all stages.

Accuracy.-Good.

SOU'TH LILLOOET RIVER.

The South Lillooet river rises in the Lillooet lakes at an elevation of 370 feet, discharging into Pitt river below Pitt lake at about sea-level. The drainage area of the South Lillooet river is 70 square miles, while that of the Lillooet river (including the North Lillooet) is 105 square miles.

The precipitation in the Lillooet watershed varies from 70 inches per annum at the mouth to 80 inches or more at the headwaters. The stream is at present used for logging, but there are water-power possibilities on it.

The original plan of development of this stream by the Burrard Power Company was the diversion of water from the Lillooet lakes over the divide to Kanaka falls near the Fraser river. The Burnett Iumber Companv obiected
to the alienation of South Lillooet river water, since the company claimed the right to use the natural flow of the stream for logging purposes. From these objections sprung the famous Burrard Power case, through which the right of ownership of the Dominion of Canada to the water within the Railway Belt of British Columbia was formally established.

Another plan of development is by carrying the water in a $5 \frac{1}{2}$-mile flume along the hillsides north of the South Lillooet river to a controlling reservoir, and then by a 1500 -foot penstock to a power-house in S.E. $\frac{1}{4}$ sec. 28 , tp. 12 , E. C. M., near the North Lillooet river. This would give a head of something like 300 feet, but the flume would be rather expensive.

The upper Lillooet lake is only about a mile from Stave lake, and is 100 feet higher. A short tunnel would permit the diversion of the water into Stave lake, where it would augment the flow available for the Western Canada Power Company's plant. This company has a head of about 100 feet at its present plant, and could use the water again at the lower plant which it proposes to build to take advantage of the remaining 100 -foot drop between the upper plant and tidewater.

There are extensive flats on both sides of the South Lillooet river for 7 miles from the mouth, and part of this land is under cultivation at present. It is often flooded, and much of it must be dyked before it can be used for farming. The land is very fertile, and either open or easily cleared. The intermediate part of the watershed is composed of hills and plateaus a few hundred feet high, with very valuable fir and cedar timber. Some of this has been cut, and logging operations are being carried on at present. The logs are run down the river during the freshets, but this method is not very satisfactory. The building of the proposed Vancouver-Mission tram line will probably provide a better means of handling the timber. In the upper part of the watershed there are mountain peaks several thousand feet high, on some of which the snow remains all summer until washed down by the fall rains.

Near the mouth of the stream the water is deep, sluggish, and is affected by the rise and fall of the tides. Higher up it is swift and comparatively shallow.

The station on the South Lillooet river was established on October 26, 1911, by C. G. Cline, and continuous gauge readings have been taken ever since. It is located at the upper highway bridge across the Lillooet river about $2 \frac{1}{2}$ miles from Port Haney, and just south of Yennedon post office. This is about 7 miles above the mouth of the North Lillooet, and 7 miles below Lillooet lake.

The gauge is a chain gauge located near the middle of the bridge on the downstream side-plumber's chain with a plumbbob 24.3 feet long over all. There is also a vertical staff gauge 8 feet long attached to the cribwork of the bridge. Both gauges are referred to the same datum, and three bench-marks are established.

Discharge Measurements of South Lillooet River, 8 miles from mouth, 1911-12-13.

Date.	Hydrographer.	Meter No.	Width.	Area of Section	Mean Velocity.	Gauge Height.	Discharge.
Oct ${ }^{1911}{ }_{26}$	C. G. C. \& K. H. S	1,057	Feet.	Sq. it.	Ft. per sec.	Feet. 1.18	Sec.-ft. ${ }_{226}$
Dec. 13..	K. H. Smith.......	1,057	120	316	$4 \cdot 3$	2.80	1,360
July ${ }_{\text {1912. }}^{4}$.	C. G. Cline	1,046	105	151		1.50	361
Aug. 17..	do	1,046	125	288	$3 \cdot 5$	2.70	1,010
Sept. 10	do	1,046	115	234	$3 \cdot 3$	2.00	767
Nov. 13..	do	1,046	125	608	8.1	$4 \cdot 60$	4,950
May ${ }^{1915}$	C. G. Cline		125			$2 \cdot 45$	
July 10..	K. G.C. \& C.G.C	1,055	125	296	3.8	$2 \cdot 4$	1,120

SESSIONAL PAPER No. $25 f$
Monthly Discharge of South Lillooet River, near Mouth for 1913.

Mosth.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Tot:a! } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
January	1,420	220	593	$5 \cdot 93$	6.94	36,500
February	5,920	140	1,1,01	11.80	$12 \cdot 29$	65, 500
March	2,830	160	693	6.93	7.99	42,600
April.	1.4.11	320	$\begin{array}{r}572 \\ \hline \text { 208 }\end{array}$	$\therefore \div$	9.73	51,900
May.	2,170	440	1,238	$12 \cdot 38$	$14 \cdot 30$	76,200
June...	1,640	840	1,095	1119.9	$12 \cdot 18$	(it, 9,4
July	1,310	320	75%	7.5	5.72	4t, s (H
August....	750	140	303	$3 \cdot 03$	$3 \cdot 49$	18,600
September	2,170	120	. 526	$5 \cdot 26$	$5 \cdot 87$	31,300
October...	4,410	120	1.021	$10 \cdot 21$	11.76	63,000
November	5,920	580	2,038	$20 \cdot 38$	$22 \cdot 74$	121,000
December.	1,880	320	900	$9 \cdot 00$	110.3	55,300
The year.	5,920	120	934	$9 \cdot 34$	$126 \cdot 29$	673,300

Note,-Accuracy "A", "B" and "D".

Dally Gayge Heights and Discharges of South Lillooet Piver near mouth for 1913.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height.	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge
	Feet.	Sec.-ft.	Feet.	Sec. -ft.								
$\frac{1}{2}$	$\begin{aligned} & 2.7 \\ & 2.5 \end{aligned}$	1,420 1,210	$\begin{aligned} & 1 \cdot 6 \\ & 1.6 \end{aligned}$	$\begin{aligned} & 440 \\ & 4411 \end{aligned}$	$\begin{aligned} & 1 \cdot 1 \\ & 1 \cdot 1 \end{aligned}$	190	$\begin{aligned} & 1.6 \\ & 1.5 \end{aligned}$	440	$\frac{1.9}{1.5}$		$2 \cdot 2$	
3.	2.4	1,210	$1 \cdot 6$	440	1.11	190	1.5	370 370	1.7	3,11 510	2.8	1,3,30
4	$2 \cdot 3$	1,020	1.5	370	1.11	160	1.4	320	$1 . \%$	510	2.9	1.6411
5		1,020	1.5	370	1-2	220	2.0	750	$1 \cdot 6$	440	2.3	1,5314
6	$2 \cdot 4$	1,110	1.5	370	1.4	320	1.9	660	1.6		$2 \cdot 4$	
7	2.1 1.8	-840	1.3	270	1.5	370	1.1	5 ma	1.7	510	$2 \cdot 4$	1,1111
9	1.7	530	$1 \cdot 3$	270	1.7	510	1.7	510	\cdots	540	$2 \cdot 4$	1,1111
10	1.7	510	1.1	190	1.7	510	$1 \cdot 0$	440	$2 \cdot$	1,020	$2 \cdot 2$	1. 1101
11.	$1 \cdot 6$	440	$1 \cdot 0$	160	1.7	510	$1 \cdot 9$	660	2.9	1,640	$2 \cdot 1$	A:11
${ }_{13}^{12 .}$	1.7	370 320	1.0 0.9	160 140	1.4	550 440	9.1	840 1,820	$3 \cdot 1$	1, is. ${ }^{\text {a }}$	\cdots	:111
14.	$1 \cdot 6$	440	${ }_{1.2}$	220	1.6)	440	2.4	1,020	$2 \cdot 9$	1,640	\cdots	9
15.	1.7	510	3.5	2,470	1.9	660	$2 \cdot 2$	${ }_{9} 93$	3-2	2,020	2.4	1.111
16	1.6,	440				1,210	$2 \cdot 1$	-11	$3 \cdot 3$	2,170	$2 \cdot 4$	1,1111
17	1.5 1.4	370 320	3.11 4.7	5,920 5,170	3.1	1,		840	\cdots	1,640		
18.	1.4 1.4	320 320	4.7 3.6	5,170 2,640	3.7 3.3	2. 2170	$1 \cdot 9$	${ }^{\text {che }}$	$3 \cdot 11$	1,760	\because	\% 3
20	1.3	270	${ }_{3 \cdot 2}$	2,020	\%	2,020	\%	1,210	$2 \cdot 5$	1,420 1,210	2-4	1.112,
21.	$1 \cdot 3$	270	$3 \cdot 0$	1,760	21	340		1,420		1,110		
22	1.4	320	2.5	1,210	1.9	660	2.7	1,420	2.4	1,110	2-1;	$1 . .11$
23.	1.2	220	$2 \cdot 3$	1,020	1.7	510	\#	1.310	2.4	1,110	\%	1,
24	1.5	370	1.4	bit)	1.6	4410	\because	1.110	2.5	1,210	$\because 2$	(2)
25.	1.7	510	1.7	510	1.4	440	2.5	1,210	-	1,210	2	(9,i)
26.	1.8	5819	1.5	370	1%	270	$2 \cdot 6$	1.310	2.9	1.640	$2 \cdot 1$	411
27.	1.9	${ }^{6} 6.6$ (1)	1.3	270	1%	229		1,310	$\because 9$	1.640	$\cdots 1$	(11)
28.	1.9	6,60	1.3	270	1.	311)	$2 \cdot 5$	1,210	$2 \cdot 4$	1,530	22	93.3
29	1.8	5810			2.11	75	23	1,020	\because	1,310	2	(93\%
31.	1.8	580			1.9	6691 510	$2 \cdot 1$	840	$2 \cdot 3$	1,210	2.7	1.42011
	1.7	510			1.	510			$2 \cdot 4$	1.110		

Daily Gauge Heights and Discharges of South Lillooet River near mouth for 1913-Concluded.

Day.	Julv.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height	Discharge	Guage Height	Discharge	Gruge Height	Discharge	Gauge Height	Discharge.	Gauge Height.	Discharge
	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet.	Sec. -ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	$2 \cdot 6$	1,310	$1 \cdot 4$	320	$1 \cdot 0$	160	$1 \cdot 0$	160	1.8	540	$3 \cdot 1$	1.380
2	$2 \cdot 6$	1,310	1.4	320	$1 \cdot 1$	190	$1 \cdot 11$	169	$1 \cdot 8$	5.40	$3 \cdot 0$	1,860
3	$2 \cdot 5$	1,210	1.5	370	1-2	220	$0 \cdot 9$	140	$1 \cdot 8$	S*)	$2 \cdot 7$	1,42.)
4	$2 \cdot 4$	1.110	1.5	370	$1 \cdot 8$	550	0.9	140	$1 \cdot 8$	580	$2 \cdot 5$	1,210
5	$2 \cdot 4$	1,110	$1 \cdot 2$	220	$3 \cdot 3$	2,170	0.9	140	$2 \cdot 4$	1,110	$2 \cdot 3$	1,020
6.	$2 \cdot 4$	1,110	$1 \cdot 0$	160	$3 \cdot n$	1,760	0.8	120	$2 \cdot 9$	1,640	$2 \cdot 2$	939
7	$2 \cdot 3$	1, () 20	1.0	16)	$2 \cdot 8$	1,530	$0 \cdot 9$	140	$2 \cdot 9$	1.640	$2 \cdot 2$	9.31
8	$2 \cdot 3$	1,020	$1 \cdot 0$	16.$)$	$2 \cdot 5$	1,210	0.9	140	$2 \cdot 7$	1,420	$2 \cdot 1$	840
9	$2 \cdot 2$	930	0.9	140	$2 \cdot 5$	1,210	1.0	160	$2 \cdot 5$	1,211)	$2 \cdot 1)$	7.0
10.	$2 \cdot 0$	750	$0 \cdot 9$	140	$2 \cdot 1$	840	$1 \cdot 0$	160	$2 \cdot 6$	1,310	1.8	580
11.	$2 \cdot 4$	1,110	$0 \cdot 9$	140	$2 \cdot 0$	750	$1 \cdot 6$	440	$2 \cdot 4$	1,110	1.9	Gib)
12	$2 \cdot 3$	1,020	$1 \cdot 0$	160	1.8	580	$2 \cdot 5$	1.210	$2 \cdot 2$	930	$2 \cdot 0$	750
13.	$2 \cdot 3$	1.029	$1 \cdot 0$	1611	1.8	$5 ¢$	$2 \cdot 4$	1,110	$2 \cdot 0$	750	$2 \cdot 1)$	7.01
14	$2 \cdot 2$	930	$1 \cdot 1)$	160	1.9	660		2,760	$1 \cdot 9$	6601	$2 \cdot 1$	¢ 40
15	$2 \cdot 2$	930	$1 \cdot 1$	190	1.7	510	$4 \cdot 4$	4,410)	$1 \cdot 7$	510	$2 \cdot 5$	1,530
13.	$2 \cdot 2$	930	$1 \cdot 1$	19.)	$1 \cdot 5$	370	$3 \cdot 9$	3,230	$4 \cdot 5$	4,663	$2 \cdot 0$	1,610
17	$2 \cdot 0$	750	$1 \cdot 4$	32)	1.5	370	$3 \cdot 5$	2.470	$3 \cdot 8$	$3 \cdot 020$	2.7	1,420
1	$1 \cdot 6$	530	1.9	660	$1 \cdot 1$	320	$3 \cdot 1$	1.880	$3 \cdot 5$	2,470	$2 \cdot 6$	1,:310
19	1.7	. 510	$2 \cdot 0$	750	1-2	220	2.9	1.640	$3 \cdot 0$	1,760	$2 \cdot 3$	1,023
23	1.7	510	1.8	580	$1 \cdot 0$	160	$2 \cdot 65$	1,365	$2 \cdot 7$	1,420	$2 \cdot 1$	$\therefore 10$
21	$1 \cdot 5$	370	$1 \cdot 5$	580	$1 \cdot 0$	160	$2 \cdot 5$	1,210	$2 \cdot 6$	1,310	$2 \cdot 0$	750
22	$1 \cdot 5$	370	$1 \cdot 7$	510	$0 \cdot 9$	140	$2 \cdot 4$	1,110	$2 \cdot 5$	1,210	$1 \cdot 9$	660
23	1.7	510	$1 \cdot 9$	669	$0 \cdot 9$	140	$2 \cdot 3$	1,020	$2 \cdot 5$	1,210	1.7	510
24	$1 \cdot 8$	580	$1 \cdot 6$	440	$0 \cdot 9$	140	$2 \cdot 35$	975	$5 \cdot 0$	5,920	$1 \cdot 6$	440
25	$1 \cdot 6$	440	$1 \cdot 4$	320	0.9	140	$2 \cdot 3$	1,020	$4 \cdot 5$	5,420	1.5	370
26	1.5	370	$1 \cdot 3$	270	$0 \cdot 9$	140	$2 \cdot 2$	9.30	$4 \cdot 5$	4,650	1.4	320
27.	$1 \cdot 4$	320	$1 \cdot 2$	220	0.8	120	$2 \cdot 1$	840	$4 \cdot 4$	4,410	$1 \cdot 6$	440
2.3	$1 \cdot 4$	321	$1 \cdot 2$	223	0.8	120	$2 \cdot 0$	750	$4 \cdot 3$	4,170	1.8	580
23.	1.5	370	$1 \cdot 1$	190	0.9	140	$1 \cdot 9$	660	$3 \cdot 8$	3,020	1.8	お)
30.	1.5	370	$1 \cdot 0$	16.1	$1 \cdot 0$	160	1.8	580	$3 \cdot 1$	1,880	1.8	511
31.	1.4	320	1.0	160			1.8	580			1.8	550

STAVE RIVER.

Stave river rises in Stave lake at an elevation of about 225 feet, and flowing southerly, discharges into Fraser river at Ruskin, at an elevation of 20 feet. It is part of Fraser drainage. Cascade creek flows into Stave river from the east near stare falls, and Mecomell and ('ypress (reeks flow into stave Lake also from the east. (ilacier and (learwater creeks enter stave lake from the west, and the Upper Stave river flows in from the north. This latter stream has not been thoroughly explored, and is visited only by trappers and timber cruisers. it is outside of the Railway Belt, and there are no reliable maps. It is imposible to determine the drainage area aceurately, but the engineers of the Weetern ('anada Power Company estimate it at 450 square miles.

The waters of Stave river are being used to develop hydro-electric power which is used in Vancouver, New Whestminster, and the surrounding country as far east as Mission.

Precipitation records have been kept at stave falls hy the Western ('anada Power ('ompany since ()ctober, 1909, and show a mean of about so inches. This is probably much less than the average over the whole watershed.

Below the lake the winter conditions are not severe. There are heavy rains at different times of the year, but very little show or frost, and the river does not freeze over. In the higher altitudes the snowfall is heary, and there is snow on the mountain peaks practically all summer.

SESSIONAL PAPER No. 25f

There are a number of glaciers in the watershed. The spring freshets come about May or June, and the run-off is kept large nearly all summer he the melting of the snow on the mountains and glaciers. In the autumn, in October or November, there is generally another flood, caused by the warm autumn rains falling on what is left of the snow. This freshet does not last as long as that in the spring, but is generally more severe. Sometimes also a fall of rain and a few days warm weather in December or January will cause another rise, or winter freshet, of short duration. The low-water periods occur in the autumn near the latter part of August or in september, and in the winter during Jamuary, Fehruary and March. These statements are, however, only general, and do not always hold true.

Regular gaugings of Stave river have been made by the power company since May, 1905. The first gauge was above the site of the dam, and was flooded out in April, 1910. Since September of that year, a gauging station below the dam has been used. Here there is a good permanent gauge, securely fastened to a heavy timber crib, loaded with rocks, and the gauge has been referred to the regular system of levels used for the construction work. Meter measurements were made from a car suspended from a steel cable, which was stretched across the stream at the gauge. A good rating curve was obtained, particularly at the low and medium stages. Check measurements of discharge were made by the engineers of the Hydrographic Survey. These agree with the power company's rating curve to within 5 per cent. Since the beginning of 1912, stoplogs have been in place in the main dam, and the water of Stave lake has been kept at an artificial level. Hence the discharges of Stave river as recorded by the power company are not the natural flow of the river.

Stave lake lies mainly in townships 4 and 5 , range 3, west of the 7 th meridian. It was originally 9 miles long in a north-and-south direction, and about $11 / 2 \mathrm{miles}$ wide. The east and west shores are almost precipitous, but at the head and foot of the lake there are low-lying areas which are flooded at high water. The lake now makes a good storage reservoir.

Seven miles south of the lake there is a fall in the river, and, including the rapids in the immediate vicinity, there is a total drop of 80 feet. A dam 55 feet high has been constructed, and this is sufficient to drown out the rapids, and to raise the level of the lake about 20 feet. Consequently the reservoir extends from the dam to the upper end of the lake, including the low-lying lands above mentioned. The reservoir is therefore about 16 miles long, and has an area of about 18 square miles.

The total available head is 120 feet, or at the low level of the lake, 100 feet, giving an average head of 110 feet. By means of the storage, a mean flow of at least 3,000 c.f.s. can be obtained. The present power development should produce some 28,000 horse-power continuously, and, under usual operating conditions, a peak load of about 45,000 horse-power.

Below Stave falls, the river continues its course over a series of rapids for a distance of 4 miles, finally debouching through a narrow granite gorge into a tide water basin, where it joins the Fraser river. By the construction of a dam in this gorge a head of 120 feet could be obtained, and the water as it comes from the upper plant could be used to develop a similar quantity of power. In this way the total capacity of Stave river could be used to its best advantage.

The upper Lillooet lake is only about a mile from Stave lake, and is 100 feet higher. A short tunnel would permit the diversion of water into Stave lake, where it would augment the flow available for the Western Canada Power Company. The 100 -foot fall from Lillooet lake to Stave lake could probably be utilized also by a plant built near Stave lake below the end of the tunnel.

The present installation at Stave falls includes the dams and spillways necessary to regulate and control the water. The intake and power-house have been placed in an old channel of the river, and this channel has been deepened below the power house, to serve as the tail-race. Machinery has been installed for the development of 26,000 horse-power, consisting of two 13,000 horse-power turbines directly connected to 7,500 kilowatt alternating current generators with the necessary exciters, transformers, switches, etc., and 35 miles of double transmission line (60,000 volts) to the receiving station at Vancouver. Provision has been made for the installation of two more units of 13,000 horsepower each, and it is understood that the company has already ordered some of the additional machinery and equipment.

STAVE RIVER

Location.-Near plant of Western Canada Power Company at Stave falls in section 3, township 4, range 3, west of 7th meridien.

Records Available.-April 19 to December 21, 1901; May 3 to December 31, 1905; January 1 to December 31, 1906; January 1 to December 31, 1907; January 1 to December 31, 1908; January 1 to December 31, 1909; January 1 to April 30, 1910; September 27 to December 31, 1910; January 2 to December 31, 1911; January 1 to December 31, 1912; January 1 to September 30, 1913.

Winter Conditions.-Open water all season.
Gauge.-Vertical staff gauge fastened to rock-filled crib; daily readings; washed out in October 1913.

Channel.-Permanent rocky channel, water swift at higher stages.
Discharge Measurements.-Large number of meter measurements taken from permanent cable station by engineers of the Western Canada Power Company. Three check measurements taken by the engineers of the British Columbia Hydrographic Survey show close agreement. Chamel changed in October freshet.

Accuracy.-Good.

SESSIONAL PAPER No. 25f

Monthly Discharge of Stave River at Stave Falls for 1913.

	Month.	Discharge in Second-Feet.			Run-Off.
		Maximum.	Minimum.	Mean.	Total in acre-feet.
January		3,710	711	1,533	94, 100
Fehruary		18,400	750	$\cdots, 999$	164, 600
March.		\bigcirc	810 1,800	$\stackrel{2,319}{3,690}$	142,600 219
May.		11,100	2,190	3, 530	358,500
June		10,000	5,650	7,467	443,300
July.		11, 4110	3,810	6,675	410,500
August.		s, 120	2,440	3,650	224,400
September		31,700	1,760	5,157	307,000

Daily Gauge Heights and Discharges of Stave River near stave Falls for 1913.

Daily Galge Heights and Discharges of Stave River near Stave Falls for 1913.-Concluded.

		July .		August.		September.	
		Gauge Height Height	Dis- charge	Gauge Height	Discharge	Gauge Height.	Dis- charge.
		Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	.		11,400		4,620		2,220
2.			7,950 6,880		4,480 4,200		2,991 15.460
4			6,430		3,880		31.700
5			6.750		3,530		15,95)
6			7,800		3,280		9,750
7			9.610		3,180		6,070
8			6,390		3,460		4,840
9			6,530		3.500		6,430
10			8,090		3,390		5,400
11			6,740		3,350		4,310
12.			6,610		4,420		3,350
13.			5,410		3.430		2,890
14			5,010		3,640		3,070
15.			4,200		3,880		2.820
16			4,480		4,060		2,580
17.			4,620		4,660		2,470
18.			5,300		8,120		2,610
19	.		6,320		5,360		2,930
20			6,920		4,020		2,580
21.			7,030		3,320		2,650
22			6,990		2,860		2,823
23.			6.990		3,180		2,650
24.			7,060		3.040		2,290
25			7,530		2,860		1,940
26			10,800		2,750		1.760
27.			9,820		2,650		2.15017
28.			5,300		2,650		3,740
29			3,410		2,510		$\because .650$
33.			4,310		2,470		$2,44{ }^{\prime}$
31			3,810		2,440		

YOUNG CREEK

Location.-At mouth, in section 10, township 7, range 7, west of 7 th meridian.

Records Available.-Continuous since October 20, 1912.
Winter Conditions.-Very heavy snowfall but very little ice in stream; practically open water conditions all season.

Gauge.-Vertical staff gauge, readings once or twice a week.
Channel.-Permanent rocky channel.
Discharge Measurements.-One measurement in 1912 and five in 1913 show fair agreement and cover all stages except the larger freshets.

Accuracy.-Infrequency of gauge readings will tend to impair accuracy of results.

YOUNG CREEK.

Young creek has its source in Young lake at an elevation of 2,200 feet, and discharges into Brandt creek about 2 miles from its mouth, at an elevation of 1,800 feet. It is part of Burrard Inlet, drainage.

The rainfall in the Young creek watershed is probably between 120 and 150 inches. There are several feet of snow in the winter, but comparatively little ice, and open-water conditions prevail at the gauging station.

The Westminster Power Company proposes to include Young creek in its high-head development. The latest plan is to divert the water from Young lake through a pipeline to Norton lake, which is to be the main equalizing reservoir. From Young lake the main pipeline will be carried down the hill to the power-house situated near the mouth of Brandt creek. A dam constructed at the outlet of Young lake will provide for considerable storage.

A gauging station has been established by this survey at the mouth of Young creek. The gauge readings so far have been rather irregular. A trail has now been cut from Norton lake to Young lake and it may be found better to discontinue the station at the mouth of Young creek, and establish a new one at Young lake. The erection of a cabin at Norton lake as headquarters for the gauge readers will render this plan more feasible.

Discharge Measurements of Young Creek at Mouth 1912 and 1913.

	Date.		Hydrogr	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Whlth	Area of Section.	$\begin{aligned} & 11 \text { ean } \\ & \text { lilocint! } \end{aligned}$	Gauge Height.	Discharge
	1912				Fieet	$\therefore \mathrm{St} . \mathrm{ft}$.	Ft. per sec.	Fret.	Sec.-ft.
Oct.	20.		G. Cline	1,046	$10 \cdot 1)$	10.8	$1 \cdot 16$	$2 \cdot(10)$	$11 \cdot 11$
	1913								
June	3		C. Hughes	1. Hia	12.11	21.8	$\because \cdot 46$	$1 \cdot 80$	5.
June	10		do	1.673	14.11	$1 . i$	1.45	1.31	20112
June	18		do	1. 673	13.11	1.1 1	$2 \cdot 26$	1.65	$37 \cdot 1$
July	30		do	1.673	$11 \cdot(1$	7.75	0.811	1.16	$6 \cdot 19$
Sept	18	f	Marlamhlan	1,673	$10 \cdot 10$	$10 \cdot \%$	1040	$1 \cdot 01$	$8 \cdot 61$

[^9]5 GEORGE V., A. 1915
Monthly Discharge of Young Creek at Mouth for 1913.

Montr.		Discharge in Second-Feet.			Run-Off.
		Maximum.	Minimum.	Mean.	Total in acre-feet.
January		11.5	$7 \cdot 0$	8.2	504
February..		28.0	8.5	$16 \cdot 6$	1992
March.		25.0 53.0	11.5	$19 \cdot 1$ $30 \cdot 1$	1,170
May.		140.0	15.0	51.0	3,140
June.		53.0	28.0	$36 \cdot 4$	2,170
July.		$35 \cdot 0$	8.0	$19 \cdot 9$	1,220
August.		13.0	4.0	6.9	424
September		13.0	6.0	8.9	530
October...		$130 \cdot 0$	$5 \cdot 8$	$20 \cdot 6$	1,260
November December		28.0 13.0	10.0 6.0	$14 \cdot 0$	833
December.		13.0	$6 \cdot 0$	$10 \cdot 2$	627
The year.		$140 \cdot 0$	4.0	20.2	14,600

Note.-Accuracy "B" and "C".

Monthly Discharge of Young Creek at Mouth for 1912.

	Month.	Discharge in Secon -Feet.			Run-Off.
		Maximun.	Minimum.	Mean.	Total in acre-feet.
November		20	11	$16 \cdot 1$	958
December.		11.5	8	$8 \cdot 87$	545

SESSIONAL PAPER No. $25 f$

Daily Gafge Heigits and Dischatraes of Young Creek near Mouth for 1912.

5 GEORGE V., A. 1915
Daily Galge Heights and Discharges of Young Creek at Mouth for 1913.

Day.	January.		February.		March.		April.		May.		June.	
	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge
1.	Feet.	Sec.-ft. $3 \cdot 0$	Feet.	Sec.-ft. 11	Feet.	Sec. -ft . 25	Feet.	Sec.-ft. 11.5	Feet. 1.25	Sec.-ft. 15	Feet.	Sec.-ft. 45
2.		7.5		11		25	1.15	11.5		15		50
3		$7 \cdot 5$		10		25		11.5		16	1.8	53
4.		$7 \cdot 5$		10		25		12		16		50
5.		75	$1 \cdot 1$	10		25		12		17		46
6.		7.5		10		25		13	$1 \cdot 3$	17 50		43
7.		$7 \cdot 5$ 7.0	$1 \cdot 1$	10 10	$1 \cdot 45$	25	$1 \cdot 2$	13 13		50 80	$1 \cdot 65$	40 35
9.		$7 \cdot 0$		10		24	$1 \cdot 2$	19		110		30
10.		$7 \cdot 0$		9		23		24	$2 \cdot 7$	140	1.5	28
11.	$1 \cdot 0$	$7 \cdot 0$		$9 \cdot 0$	1.4	22		29		120		28
12.		$7 \cdot 0$		$8 \cdot 5$		21		34		100		28
13.		$7 \cdot 0$	$1 \cdot 05$	$8 \cdot 5$		19		39		80		28
14.		$7 \cdot 0$		$10 \cdot 0$	$1 \cdot 3$	17	$1 \cdot 7$	44		62	$1 \cdot 5$	28
15.		$7 \cdot 0$		$13 \cdot 0$		18		46	1.7	44		31
16.		$7 \cdot 0$		16.0		19		48		44		34
17.		$7 \cdot 0$		19.0		20		. 1		44		37
18.	$1 \cdot 8$	$7 \cdot 0$		22		21	1.8	53		44	$1 \cdot 65$	40
19.		$7 \cdot 5$		25	$1 \cdot 4$	22		50	1.7	44		40
20.		$7 \cdot 5$	1.5	28		20		48		44		40
21.		$8 \cdot 0$		25		19				44		40
22.		$8 \cdot 0$		27	$1 \cdot 3$	17	$1 \cdot 7$	4		44		40
23.		S. 5		26		16		41	1.7	41	$1 \cdot 6.5$	40
24.		$9 \cdot 0$		25		14		37		44		34
25.		9.5	1.45	25		12		34		45	1.5	28
26.		111.0		25	$1 \cdot 15$	11.5		30		46		30
27.		110.5		25		11.5		27		47		31
28.		11.0		25		11.5		24	$1 \cdot 75$	48	1.5 .5	32
29.		11.0				11.5		21		42		32
30.	$1 \cdot 15$	11.5				11.5		18	$1 \cdot 6$	35		31
31.		11.j				11.5		.		40		

SESSIONAL PAPER No. 25f
Daily Gauge Heights and Discharges of Young Creek at Mouth for 1913-Concluded.

BELKNAP CREEK BELOW ANN LAKE.

Location.-Section 12, township 7, range 7, west of 7th meridian.
Records Available.-Three meter measurements only.
Winter Conditions.-Very heavy snowfall, but very little ice on the stream. Open water conditions all year.

Gauge.-Gauge painted on big boulder in the stream-no gauge readings.
Channel.-Bed of stream covered with rocks and boulders, giving uneven bottom but good control.

Discharge Measurements.-Three measurements in 1913.
Accuracy.-The three measurements give accurately the discharge on the days they were taken. No gauge readings.

Discharge Measurements of Belknap Creek at Anne Lake, 1913.

	Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height	Discharge.
	1913			Feet.	Sq.ft.	Ft. per sec.	Feet.	Sec.-ft.
June	24	H. C. Hughes..	16.3	27	76.5	1.76	$2 \cdot 52$	135
Aug.	1.	H.C. Hughes.	1673	32	$91 \cdot 11$	0.91	$2 \cdot 15$	$82 \cdot 5$
Sept.	- 19	F. MacLachlan.	1673	30	59.5	$0 \cdot 50$	1.20	29.8

BRIDGE RIVER.
Location.-Near Seton lake, and about 30 miles from the mouth of Bridge river.

Records Available.-One meter measurement. Gauge readings taken regularly since June, 191:3, will be arailable when meter measurements have heen made.

Winter Conditions.-Open-water conditions practically all year.
Gauge.-Vertical staff gauge; readings taken twice daily since June, 1913.
Channel.-Sandy, possibility of shifting.
Discharge Measurements.-One measurement.
Accuracy.-Only one meter measurement taken during 1913, but a good set taken during 1914 should give accurate discharge data from the gatuge records which have been kept.

BIRIDGE RIVER.

Bridge river has its source in the mountains northwest of Lillooet, at an elevation of from 8,000 to 10,000 feet. The stream discharges into the Fraser river 4 miles north of Lillooet at an clevation of 700 feet. It is part of the Fraser drainage.

The south fork enters from the south; and from the north, the north fork, Tyaughton creek and Gun creek. The 1912 provincial map (scale 17.75 miles to 1 inch) shows a dramage area of 2,400 square miles for the whole stream. About 1,900 miles of this is above the ganging station, which is near the site of the intake for the proposed hydro-electric plant.

Probably a small amount of water from the river is used at the various mines. There is a good location for a hydro-electric power development on this stream. as explained below. Water from some of the smaller tributaries is used for irrigation.

The precipitation during the eleven months ending April 30, 1914, was 2.2 inches. There is snow in the winter, but the cold is not steady and rain is frequent during the winter months. Ice forms in the upper part of the watershed, but the strem is open practically all the year at the gatuging station.

The station was established Jume 13, 1913, hy one of the engineers of the Provincial Water Rights Branch, and was taken over hy the British Columhia Hydrographic surver in October, 1913. (Gatuge readings have heen continuont since June 13, 1913.

A number of branches combine about 60 miles northwest of Lillooet to form Bridge river proper. The stream flows through a comparatively narow valley surrounded hy high hills and mountains. About 20 miles from Lillooet it enters a rocky canyon. A few miles ahore this canyon the stream flows within 5 miles of seton lake. The elevation of the stream at this point is about 2,800 feet, whike the elevation of seton lake is only 800 feet. This gives a difference in clevation
of some 2.000 feet. The ridge separatime the (wo rises to an alt it ude of something like 4,000 feet. A wagon road has been built from Mission, at Seton lake, over this ridge to give an entrance into the Bridge River valley. This route was selected in preference to that of the ohd park trail which follows up the river from its mouth.

Until the last year or two, comparatively little was heard of the Bridge River country. Some discoveries in mineral, however, created a mild mining boom. A few mines were opened, particularly on Gun creek, and a road was built over the divide, from Seton lake, to replace part of the old pack trail. Some of these mines are being worked at present.

A few ranches have been taken up in the valley above the canyon. Most of these are not very extemsive as ret and prohably do mot furnish what sumplies are necessary for the mines. There is some good land which has not been taken up, but the farming industry will probably never be of very great importance. Near the mouth of the river there are some good benches which produce good crops when irrigated.

On account of the proximity of Bridge river to Seton lake, and the great difference in altitude, there is a splendid chance to develop a large amount of water-power. By driving a tunnel through the intervening ridge, water could be diverted from Bridge river and conveyed to a point on the hillside above Seton lake, whence steel penstocks could be laid to a power-house situated on the lake. Such an installation could make use of the whole minimum flow of Bridge river at a head of about 2,000 feet. If storage could be obtained on Bridge river, the available flow could be increased. The minimum flow of the stream has not been determined as yet, but the measurements given below show that this stream has great power possibilities. For instance, a flow of 1,000 second-feet at a 2,000-foot head would permit a development of more than 150,000 horse-power. The length of the tumnel required, however, will necessitate a large initial development, and before this could be undertaken a market for the power should be assured. The presence of the Pacific Great Eastern railway, which is being constructed along Seton lake, while providing good transportation, introduces certain complications. The diversion of so much
 the lake, in order to protect the riparian owners. The natural flow of Scton creck is being studied at present by the engineers of this survey.

The gauging station on Bridge river is established at the bridge where the wagon road crosses the river, about 8 miles from Mission and 27 miles from the mouth of Bridge river. There is a staff gauge securely fastened to the timber abutment of the bridge and referenced to three bench-marks. The measurements are made from the upstream side of the bridge, with the meter and weight suspended on a cable. The gauge readings are taken twice a day. A rain gauge is also in use to determine the precipitation.

Discharge Measurements of Bridge River, near Seton Lake, 1913.

	Date.	11_	$\because: 1,:$	1indin	Area of sretion.	$\begin{gathered} i h_{1} \\ \text { Velocity. } \end{gathered}$	Gauge Height.	1)ischarge.
	13.			Feet.	$\therefore ¢ \mathrm{ff}$.	F't. persec.	1..:	Sce.ft.
Oet.	\%	C. G. Cline and H. J. F. Heys	: \because	1	1.050)	1.	$2 \cdot 34$	1.5911

[^10]
CAPILANO CREEK.

Location.-Just above the Vancouver intake, about 6 miles from the mouth of the creek.

Records Arailable.-Two meter measurements. Gauge readings since November, 1913, will be available as soon as sufficient meter measurements have been made.

Winter Conditions.-Open water all season.
Gauge.-Vertical staff gauge, readings twice daily.
Channel.-Rocky bed, water swift at high water.
Discharge Measurements.-One meter measurement in 1909 and one in 1913.
Accuracy.-When a good set of meter measurements have been taken and combined with the gauge readings, the results should be quite accurate.

CAPILANO CREEK.

Capilano creek rises in the mountains east of Howe sound, at an elevation of about 2,000 feet, and discharges into Burrard inlet, north of North Vancouver, at sea-level. It has a number of unnamed creeks tributary to it. The drainage area above the Yancouver intake is estimated by the engineers of the Provincial Water Rights Branch at 55 square miles. The stream provides a water supply for the city of Yancouver and the muncipality of Point Grey. The precipitation is probably considerably more than 100 inches per annum.

Capilano creek is a swift mountain stream with clear pure water flowing from a well-timbered mountainous watershed. There is no settlement above the intake, and hence no chance for the pollution of the water. On the higher altitudes, and as low as 3,000 feet above sea-level, snow remains in large quantities throughout the whole year. This snow storage plays an important part in regulating the flow of the stream, for the snow melts in the summer and provides a good supply of water at a time when the stream would otherwise be low.

The waterworks intake is some 6 miles from the mouth of the creek. There is a substantial concrete intake fitted with sereens, control gates, etc. The water is conveyed in steel pipes down the valley. The pipeline crosses Burrard inlet at the First Narrows and is laid through Stanley park to connect with the city mains. The muncipality of Point Grey is to obtain its water supply in a similar manner.

The Capilano valley is quite a resort for tourists, mountain climbers, campers and holiday and outing parties generally. There are two hotels, besides a number of refreshment booths in the summer. One of the North Vancouver car lines runs to the creek, and there are good automobile roads. The natural beauties of the stream and its canyon are a great attraction, and in fine weather large numbers of people visit the various points of interest.

A considerable amount of cedar is cut in the Capilano valley. A lumber chute, several miles in length, has been built, and in this the cedar shingle bolts are sluiced down to Burrard inlet.

A gauging station was established by the British Columbia Hydrographic Survey in November, 1913, to measure the flow of the stream at the waterworks intake. The gauge readings are being taken twice a day. During 1914, sufficient meter meazurements will be made to develop a rating (eurve and so render the gatuge readings arailable. One measurement was made in 1913. giving a flow of approximately 400 cubic feet per second, as shown below

SESSIONAL PAPER No. $25 f$
Discharge Mea-rrements of Capilano Creek ahove city intakes 1909-13.

CHEAKAMUS RIVER.
Location. -Near mouth of river, and 10 miles north of Squamish (Newport).
Picoms Acailable.-One meter measurement only. Romular gatue readings commencing November 29, 1913, will be available when sufficient meter measurements have been made.

Winter Conditions.-Open water all season.
Gauge.-Chain gauge from highway bridge, readings daily.
Channel.-Rocky and permanent.
Discharge Measurements.-One measurement in 1913.
Accuracy.-A good set of meter measurements should give good results with the gauge readings which have been taken.

CHEAKAMUS RIVER.

Cheakamus river rises 40 miles north of Howe sound, near the head of
 river, near Howe sound, at an elevation of about 100 feet, and forms part of the Howe sound drainage. The drainage area of the Cheakamus river, as measured from the provincial map of 1912 (scale 17.75 miles to 1 inch) is about 250 square miles.

The precipitation in the Cheakamus valley is fairly heary. There is snow in the winter, particularly in the higher altitudes. "The suall bakes in the headwaters freeze in the winter, but the stream itself remains pretty well open on account of the swiftness of the water.

The route of the Pacific Great Eastern railway follows the Cheakamus river for some 25 miles. For part of this distance the river flows through a rocky canyon, which makes the construction of railroads and trails very differult and expensive. Above the canyon the valley broadens out, but there is still a ereat deal of rock in evidence. There is comsiderable timber in the watershed, but there is not much good farming land.

Between Summit lake and Squamish river, a distance of some 25 miles, there is a total fall of about 1,900 feet. Nuch of this occurs in the 5 or 6 miles of canyon. The British Cohmbia Power and Bheario Company has applied for the right to divert 1,000 cubic fere of water per second at the canyon for power purposes, but the scheme of development does mot seem to be very well defined as yet.

A gauging station was established in November, 1913, by the British Columbia Hydrographie surver, at the highway hedge near the month of the river. It will give the flow of the stream at that point. 'This is some 5 miles below the canyon, and one or two small areds enter in that distance. If the flow through the cancon is required, it can probably be determined by applyg
a suitable coefficient to the flow as given at the gauging station. A few comparative measurements would determine the value of this coefficient. It would have been difficult to establish a suitable gauging station in the canyon, and almost inpossible to get a regular gauge reader for such a station.

Discharge Measurements of Cheakamus Creek, near Mouth, 1913.

GREEN RIVER AT NAIRN FALLS.

Location.-At Nairn falls, about 5 miles from the mouth of Creen river and Agerton post office, and about 60 miles up the Pacific Creat Eastern railway from Squamish (Newport).

Records Available.-One meter measurement in 1913. Regular gauge readings since November, 1913, can possibly be used when sufficient meter measurements have been made.

Winter Conditions.-Open all year.
Gauge.-Inclined staff gauge fastened by means of holes drilled in the rock. Daily gauge readings.

Channel.-Channel is being changed to quite an extent by railroad constructions along the west bank.

Discharge Measurements.-One meter measurement.
Accuracy.-Results will not be very accurate until the railroad construction is completed.

GREEN RIVER.

Green river has its source in Green lake at an elevation of 2,080 feet. It discharges into Lillooet river near Agerton at an elevation of 700 feet, and forms part of the Harrison-Fraser dramage. Onemile creek, sixmile ereçk and Soo river (Eightmile creek) enter from the west.

The dramage areas are measured from the provincial map of 1912 (seale $17 \cdot 75$ miles to 1 inch). The area above the mouth is 200 square miles. Nairn falls are ahout 5 miles from the mouth of the river, and it is at this point that the gauging station has been established, The area abore the falls is about 180 square miles.

The precipitation in the Creen liver valley is fairly heavy, and there is a moderate snowfall in the winter. (ireen lake is frozen over for several months but the river being quite swift remains open.

The Creen River valley forms part of the route of the Pacific Great Eastern railway, which is to run from Vancouver and Newport, on the coast, through Pemberton Meadows and Lillooet to Fort George. This road follows fairly closely the old pack trail from Howe sound to Pemberton Meadows, and during the construction of the railroad this trail was developed into a road. The completion of the railroad should provide good tramsortation facilitates in the villey:

At the summit, between Cheakamus river and Green river, there are four lakes, two of which feed (ireen river. The largest of these, (ireen lake, is some 4 miles in length. The railroad is being built around the eastern shore, and the

SESSIONAL PAPER No． 25 f
wagon road runs on the west．The locality is quite picturesque，and there is plenty of good fishing and hunting，An enterprising pioneer has estahlisited a summer resort on this lake，and expects that it will be well patronized．

Between Green lake and the mouth of the river，a distance of some 17 miles． there is a total fall of 1,400 feet．The stream is very rapid and turbulent．Two important tributaries，Soo river and Sixmile creek，enter below the lake．

About 5 miles from the mouth，the river falls through a narrow rocky gorge． giving a drop of some 170 feet in less tham a quarter of a mile．At this point it is proposed to develop hydro－electric power．A small intake dam would provide for the diversion of the water into a short flume and penstock， which would lead to the power－house situated helow the fall：．This would pro－ ride for a head of about 170 feet．There would be very little pondage at the in－ take．The presence of the ralload a few feet ahove hioh water would prevent the full utilization of Green lake storage．The main flow，however，comes from Soo river and sixmile creek，and it would probably be possible to develop storagn on these streams．

Gauging stations were extablished at Green falls and at Cireen lake in N゙ッド ember，1913．Stations were established also on the tributaries，Soo river and simmile creck，in March，1914．The station at the falls gives the umpegulated flow of the river at the intake site and the other three stations show the distri－ bution of this flow．These stations show the amount of power arailable with the natural flow of the stream，and also the relative conditions of storage facilities on the tributaries．

Discharge Measurements of Green River，Nairn Falls， 1913.

Date	Hydrographer．	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width．	Area of Section．	Mean Velocity．	Gauge Height．	Discharge．
			Feet．	Sq．ft．	Ft．per sec．	Feet．	Sec．－ft．
Sor． 18.	H．J．E．Kieys and C．G．Cline	1，016	34	－3：	1：	$2 \cdot 1$	91，${ }^{1}$

Note－－station established．

GREEN RIVER AT GREEN LAKE．
Location．－At outlet of Green lake about 45 miles up the Pacific Great East－ ern railway from Squamish（Newport）．

Records Available．－One meter measurement in 1913．Regular gauge rearlings since Nowember，191：＇，will he available when sulfiefont meter meatime ments have been made．

Winter Conditions．－Lake freezes over，but the stream is open at the gauge．
Gauge．－Vertical staff gauge spiked to stringer of highway bridge；daily gauge readings．

Channel．－Rocky channel．．
Discharge Measurements．－One meter measurement．
Accuracy．－Lesults should be fairly acerurate as soon as meter mearuremmote are made．

Discharge Measurements of Green River, at Lake, 1913.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1913			Feet.	Sq. it.	Ft. per sec.	Feet.	Sec.-ft.
Nor. 23.	H. J. E. Keys.	1,046	26	$51 \cdot 3$	$3 \cdot 0$	$1 \cdot 32$	152^{1}

${ }^{1}$ Note.-Station established

HIXON CREEK ABOVE BELKNAP CREEK.

Location.-Section 36, township 6, range 7, west of 7th meridian.
Records Available.-Three meter measurements during 1913.
Winter Conditions.-Very heary snowfalls, but little ice in stream. Open water conditions practically all year.

Gauge.-Vertical Staff. No readings.
Chamnel-Bed of stream covered with rocks and boulders. Water swift at higher stages.

Discharge Measurements.-Three measurements during 1913.
Accuracy.-Meter measurements good. No gauge readings.

Disimarge Measurements of Hixon Creek above mouth of Belknap Creek, Left Fork, 1913.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1913			Feet.	Sq.ft.	Ft. per sec.	Feet.	Sec.-ft.
July 8	H. C. Hughes	1,673	23	31.2	1.34	1.41	$42 \cdot 1$
July 31.	, do	1,673	24	$12 \cdot 8$	$0 \cdot 71$	$1 \cdot 15$	$9 \cdot 3$
Sept. 22.	f. MacIachlan	1,673	21	$12 \cdot 3$	0.49	$0 \cdot 90$	$6 \cdot 1$

LILLOOET RIVER.

Location.- At highway bridge, near Agerton post office, about 5 miles ahore Lillooet lake.

Records Available.-One meter measurement only. Regular gauge readings since November, 1913, may be available as soon as sufficient meter measurements have been taken.

Wrinter Conditions.-The stream was frozen over at the gauging station for part of January and most of February in 1914.

Ciange.-Vertical staff gatuge spiked to face of bridge pier. Readings daily. Channel.-Sandy bed.
Discharge Measurements.-One meter measurement in 1913.
Accuracy.-Possibility of backwater influence from Lillooet lake or of a shifting channel.

LILLOOET RIVER.

Lillooet river rises in the hills north of Jervis inlet at an elevation of from 8,000 to 10,000 feet. It discharges into Harrison lake near Port Douglas at an clevation of 40 feet, and forms part of the Harrison-Fraser drainage.

SESSIONAL PAPER No. $25 f$
The tributaries entering from the southwest are: Spring creek, Fire creek, Glacier creek, and Green river. The Birkenhead creek enters from the north. There are also other unnamed tributaries.

The drainage areas are measured from the provincial map of 1912 (scale 17.75 miles to 1 inch). The area above the mouth is 2,200 square miles; above the lower end of Lillooet lake, 1,600 square miles; above the upper end of the lake, 1,300 square miles. The gauging station is situated about 5 miles above the lake, and the drainage area above it is about 800 square miles, or approximately one third of the total drainage.

The precipitation is fairly heavy in the Lillooet valley, and no irrigation is necessary. There is considerable snow and ice above Lillooet lake, and the stream is frozen over for several months in the winter time.

I illonet river has a total length of ahout lot miln. This is divided into approximately two equal parts by Lillooet lake. This lake has a length of about 20 miles and an area of 25 square miles. There is a small settlement at Port Douglas at the mouth of the river, but the more important part of the Lillooet valler lies above Lillooet lake, and is known as Pemberton Meadows.

At one time the lower Lillooet river and lake formed part of the trail to the ('aribow montry. At that time Port Douglas was founded amdatamedmanderable importance for a while, since it was at the head of navigation on Harrison lake and river. After the building of the wagon road via Spences Bridge and Asheroft, of course the Lillooet route was no longer used except locally.

Pemberton Neadows could be reached by one of three routes. There was a pack trail from the head of Howe sound, up the Cheakamus river, across the divide and down freen river: there was a bark trail up Lillooet river from Ifarison lake to Lillooet lake; and also a trail from the town of Lillooet and along Seaton and Anderson lakes, which followed down Birkenhead creek. The two former routes give access to the coast, and the latter to the interior. With the projection of the Pacific Great Eastern railway, transportation facilities froin the new town of Newport siquamish) at the head of Iowe somud, thengin l'emberton Neadows to Lillooet were improved, and the trail was finally developed into a wagon road. When the railroad is built by this route it will provide easy access to Pemberton Meadows, and give direct railroad connection between Lillooet and the coast.

At Pemberton Meadows there is quite a block of valuable agricultural land. Good crops are grown at present on the higher ground. Hay and potatoes seem to be the principal products and considerable quantities were grown during 1913 to supply the railway camps. Previous to that time the productions were mainly for local use, on account of the cost of transportation, and more attention was paid to raising cattle and horses. With the completion of the railroad, both these industries will probably be greatly increased.

A great deal of the Pemberton Meadow land is subject to flooding from the Lillooet river. For several miles above Lillooet lake the stream winds through flat meadows, and has very little fall. The silt deposited by the river has built up the banks of the stream above the level of the surrounding meadows. When the stream rises high enough to flood its banks the river spreads out over the farms and prevents the land being worked to the best advantage. A few small dykes have been constructed, but no general scheme of reclamation has as yet been attempted. A projeet is being eonsidered at present he ranchers and others to content the river and provide for the reedamation of this lathe 'The propmeed scheme includes a lowering of the outlet of Lillooet lake and the dredging of the Lithoee river for several mile above the lake, together with the emetruetion of levees along both hanks of the river. Partial survers have heen mate for this scheme, but no start has been made on the actual construction work.

In connection with this reclamation scheme the British Columbia Hydrographic Survey was requested to make measurements on the Lillooet river to
determine the volume of water which would have to be handled. A station was established at the highway bridge a few miles above Lillooet lake on November 16, 1913. Regular gavge readings are being taken, and a series of meter measurements is to be made so as to give complete records of the stream flow.

Discharge Measurements of Lillooet River, near Pemberton Meadows, 1913.

LYNN CREEK.

Location.-Above North Vancouver intake, and about 4 miles from the mouth of the creek.

Records Available.-Meter measurement only. Regular gauge readings hare been taken since November 3, 1913, and will be arailahle when sufficient meter measurements have been made.

Winter Conditions.-Open water all season.
Gauge.-Vertical staff gauge.
Channel.-Rocky.
Discharge Measurements.--One meter measurement in 1913; also one by Mr. E. A. Cleveland in 1909, which is not referred to the gauge.

Accuracy.-When sufficient measurements have been made the results should be quite accurate.

LYNN CREEK.

Lynn creek has its source in Lynn lake at an elevation of 2,500 feet, and discharges into Burrard inlet, near North Vancouver, at sea-level. Its drainage area above the North Vancouver intake is estimated hy the momeers of the Provincial Water Rights Branch as being ahout 17 square miles. The stream furnishes the water supply for the mmacipality of North Vancoures. The precipitation is probably about 100 inches. In the winter time there is suow in the higher altitudes.

Lymn creek watershed lies between the lower portions of the sermoner and ('apilano watersheds and directly north of North Vanconver. 'The watershed is mountainous and well timbered and there is considerable snow shorage. The quality of the water is excellent and the streams provide a food supply for North Vancouver during most of the year. It may be necessary to provide storage as the demands of the municipality increase.

A gatuges station was established he the British Columbia Ifydrographic surver in November, 191\%, to measure the flow of the strean at the intake. Daily gatuge readings are being taken. During 1912 suffocient meter measurements will he made to develop a rating curve and so render the gatuge reading: available. One measurement was made in 1913 giving a flow of as cubic feet per second as shown below.

Discharge Measurements of Lynn Creek, above City intakes, 1913.

Inate.	Hexdrumapher.	Meter Nい。	W. 11.1	Area of	Mean Velocitr.	Gauge Heinht.	Discharge.
1909			Feet.	\therefore ¢. ft.	Ft. per sec.	Feet.	Sec.-ft.
Aur	Mr L. Clerelanit						\therefore
1913							
Nov. 3.	H. J. E. Kieys..	1, \because	-.	-	1.5	$1 \cdot 73$	53.5

SEYMOUR CREEK.

Location. - At the Vancouver water works intake, and about 7 miles from the mouth of the creek.

Records Available.-Two measurements in 1909 and one in 1913. Regular gauge readings have been taken since November 6, 1913, and these will be available when sufficient meter measurements have been made.

Winter Conditions.-Open water all year.
Gauge.-Vertical staff gauge-readings daily.
Channel.-Rocky-water swift at higher stages.
Discharge Measurements.-One meter measurement referred to gauge, more to be taken during 1914.

Accuracy.-A good set of measurements should give accurate results.

SEYMOUR CREEK.

Sermour creek has its source in Loch Lomond (Summit lake) at an elevation of 3.300 feet, and discharges into Burrard inlet, near North Vimeouver, at sea level. Its more important tributaries are stoney creek amb the East and Weest Forks. The dramage area above Vanonter intake is extimated by the engineors of the Provincial Water Rights Brameh at $7 \boldsymbol{T}$ square miles. The water is used for supplying the city of Vancouver. Below the intake shingle holts are floated down to Burrard inlet.

The precipitation is probably over 100 inches. In the winter time there are heavy snowfalls in the hills, and snow remains in some places all the year round. The stream does not freeze over at the waterworks intake.

Seymour creek is a swift mountain stream, with clear pure water flowing from a well-timbered mountainous watershed. There is no settlement above the intake, and hence no chance for the pollution of the water. On the higher altitudes and as low as 3,000 feet athere seatevel. smow remains in large quantities throughout the whole year. This snow storage mats an important part in regulating the flow of the stream, for the snow melts in the summer and provides a good supply of water at a time when the stream wouldotherwise be low. There are places, also, where artificial storage reservoirs could be made.

The waterworks intake is situated some 7 miles from the mouth of the creck. It is a substantial timber structure, fitted with screens and control gates. At the entranee to the pipes there is a settling botin peovided with regulating gates and spillways. The pipelines follow the reed valley and eros Bursard inlet there at the Second Narrows.

There is a good road up Seymour creck as far as the waterworks intake. From there, there is a foot trail for several miles farther. People from Vancouver and other plates often go (emphine amb momatain dimbine in the valley, but strict rules are imposed on all such to prevent contamination of the water supply.

A gauging station was established in November, 1913, by the British Columbia Hydrographic Survey at the waterworks intake, and regular records of the flow of the stream are being kept. The gatuge is a vertical staff attached to the face of the timber cribbing just above the intake opening. Neter measurements are made from a light cable equipment, some 200 feet above the quage At low water, measurements are made by wading. During 1914 sufficient measurements will be made to develop a rating curve and render the gatge readings available. In the meantime the meter measurements already taken are listed below.

Discharge Meastrements of Seymour Creek, ahowe City intakes, 1913.

Date.	Hydrographer.	Meter No.	Wilth.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1909	M. Cleveland (l)		Feet.	Sq. ft .	Ft. persec.	Feet.	Sce.ft.
Aug. 4 Aug. 16							$\begin{aligned} & 367 \\ & 21 \end{aligned}$
1913							
入v.6.	H. J. E. Feys..		1ii	133		$2 \cdot 60$	282

SLOLLICUM CREEK.

Location.-Near mouth of stream below falls near Harrison lake in section 19 , township 5 , range 28, west of 6 th meridian.

Records Available.-One meter measurement only.
Winter Conditions,-Open water all year.
Gauge.-No gauge.
Channel.-Rocks and gravel.
Discharge Measurements.-One measurement not referred to any gauge.
Accuracy.-The meter measurement merely gives the discharge on the day it was made and is of course quite accurate for such a purpose.

SLOLIICUM CREEK.

Slollicum creek rises near the hase of Slollicum mountain on the east side of Harrison lake at an elevation of some 2. (0) 0 () feet. It discharges into Cascade hay, an arm of Harrison lake, at about 40 feet above sea-level. It is part of the Harrison-Fraser dramage. There is a small lake on one of the branches of the creek.

The rainfall in the slollicum creek watershed will be considerably greater than that given by the meteorological station at Agassiz. The mean ammal rainfall at Agassiz is $f 7$ inches, so that probably at slollicum creek there would be from 75 to 100 inches, depending on the altitude. In the winter there is quite a heary soowfall, and the stream freezes over in the upper part of the watershed. Near the mouth, howewer, the falls keep the stream open, though masses of ice are formed by the spray.

Near the mouth of the stream there is a meries of very high falls. the largest of which has a drop of nearly 200 feet, and the total fall in less than half a mile is 2,000 feet. The stream is quite small, but a considerable amomet of power could be developed quite cheaply on areount of the high head. A meter measurement taken on september 17, 1913, gives a discharge of 20 cubse feet per second.

The minimum flow may be slightly less than this amount, but with a small amount of storage, probably a mean flow of 20 c.f.s. could be maintained. At 2,000 feet this would give some 16,000 horsepower.

Slollicum creek is only 6 miles from Harrison Hot Springs and the St. Alice hotel. The falls are quite an attraction to the guests at the hotel, and it is a fine trip across the lake by motor launch.

Discharge Measurements of Slollicum Creek, at Mouth, 1913.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1913			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft
Sept. 17.	K. G. Chisholm .	1.055	14	$12 \cdot 6$	1.55		20

REPORT

BRITISH COLUMBIA HYDROGRAPHIC SURVEY FOR 1913

CHAPTER 6
Kamloops Division-Hydrographic Data

CHAPTER VI.

KAMLOOPS DIVISION.

REGULAR METERING STATIONS.

ADAMS RIVER.

Location.-Section 6, township 23, range 12, west 6th meridian.
Records Available.-1st July to August 31 1911; 1st January to December 31, 1912; 1st January to December 31, 1913.

Winter Conditions.-Partial ice conditions exist during winter months. but river is seldom frozen over at the gauge sufficiently to have a material effect on the accuracy of returns. Severe spells of cold weather are gemerally of short duration.

Gauge.-A vertical staff gauge read daily by Mrs. Sturgill. On account of sluicing operations of the Adams River Lumber C'ompany, sudden changes of gauge height due to the opening or closing of the storage dam on Adams lake probably escape the observer's notice, and consequently ganer reathos may be slightly inaccurate.

Chomel.-The chamel varies in width from 300 to 500 feet abowe the dam, where meterings are made. The velocities are uniform, the mean never exceeding 3.0 feet per second at the measuring section. The run-off is artificially controlled by a dam near the outlet of Adam's lake.

Discharge Measurements.-The gauge-height-discharge curve is rated by well distributed meterings.

Accuracy.-The accuracy of results attached would be very high if gauge readings could be relied upon. As pointed out above, this is an uncertain source of error. It is probable, however, that results given are for the most part within 10 per cent of the truth.

It is proposed to instal a self-recording gauge at this station during 1914 to obviate possible difficulty from the source referred to above.

ADAMS RIVER.

Adams river has its souree in Adams lake, at an elevation of 1340 feet and, flowing in a southerly direction, discharges into Shuswap lake near the town of Chase, at an elevation of $1,15 \%$ feet. The following tributaries enter from the west, going upstream: Bear creek, Bush creek, Pass oreek, and upper diams river; Nikwikwaia creek enters from the east. Adams river is a part of the thuswap lake-Thompson river dramage. The dranage area, as measured from a provincial map, scate 20 miles to 1 inch, is 1,700 square miles; of this areas Adams lake constitutes 60 square miles. The water is used extomsively for logging by the Adams River Lumber Company.

The Upper Adams river rises in 'Tum-'Ium lake about 80 miles north of the main line of the C.P.R. near Chase. From this lake it flows in a southerly direetion for about 40 miles into Adams lake, a magnifeent sheet of water, fo miles long, a mile and a half wide. surrounded he high mountains. The lake rises 4 to 5 feet above its low-water level, high water taking place in June. There
$25 \mathrm{~F} \cdot 12 \frac{1}{2}$

Adams River-Adams River Lumber Company's Dam below Adams Lake.
is some agricultural land around the lake, but it is sparsely settled, and if it were desirable to use the lake as a storage reservoir for water-power purposes. and retain the lake at its high-water level, no important interests would be affected. At its southerly end, Adams lake empties into Adams river, where it falls 190 feet into Shuswap lake in the short distance of 6 miles.

There are large areas of valuable timber along Adams lake and its several tributaries. The Adams Piver Lumber ('ompany is the largest operating company. This company has constructed a dam on Adams river, about one quarter of a mile from the outlet of the lake, for \log driving purposes. The dam is rock-filled, timber-cribbed, about 180 feet long and 15 feet high; it has six sluice-gates, and a fish ladder.

On account of the excellent storage of Adams lake, it will be easy to conserve the greater part, if not all, of the run-off from season to season. The total discharge of 1912 will give a good daily mean for that period; the year 1912, howerer, is above the normal in run-off in this locality, and so should not be taken as representative of an average year.

The Adams River station was established June 31, 1911. hy (. E. Richardson. The meaturing section is located 250 yards above the Adams River Lumber Company dam, and 25 yards above the old wing dam. The gauge is a vertical staff gatue (fir) 2 inches by t inches hy 8 feet marked in feet and tenths with hack paint. It is fastened to a rock-filled arib, 7 feet high, which was built to protect the gatue from logs and ice. The erib is situated in a backeddy on the right bank, 75 vards, below the dam. The meaturements are made hy imeans of the following equipment: a ${ }^{3}$-inch mild steel cable is stretehed across the river, 20 feet down stream a tag line of $\frac{1}{8}$-inch mild steel cable is stretehed areross and pulled taut. I boat is fastened hy rope to the barger cable, and allowed to rest dieedy below the tag line. Me: surements are made every 20 feet.

This is an excellent measuring section; there is only one channel, with a permanent bed; the banks are good and the current is even. The datum of the gauge is referred to three bench-marks.

SESSIONAL PAPER No． $25 f$
Monthly Discharge of Adams River below Adams Lake for 1913.
（Drainage area，1， 700 square miles）．

Daily Gauge Heights and Discharges of Adams River below Adams Lake for 1913.

	January．		February．		March．		A！rl		11.		June．	
	Gauge Height	Dis－ charge．	Gauge Height	IDis－ charge	Gauge Height．	Dis－ charge	（i．14．．． Height．	Dis－ charge	Gauge Height．	I）iッ－ charge	Gauqe Height	I） 1 － charge．
	Feet．	Sce．fit．	Feet．	sers．ft．	Feet．	Sec． ft ．${ }^{\text {a }}$	Feet．	Sec．－ft．	Feet．	Sec．－ft．	Feet．	Sec．ft．
1	－1）．2	：－－	－0．3	$16^{\prime \prime}$	－0．3	1.1	$3 \cdot 1$	2,200		\cdots－ 010	1.9	－．．．
2	$-11 \cdot 3$	1.	－0．3	$\therefore 1$	－（1）．3	11	$3 \cdot 11$	2，290		2，519	$4 \cdot 1$	$\therefore 300$
3	-11.3	16%	－ 01.8	$1 \cdot 1$	－0．3	$\therefore 1$	$3 \cdot 0$	$\therefore \because \cdot 1$		2，514		\cdots
\pm	$-0 \cdot 3$	1 fil	－0．3	$1 \cdot 1$	－0．3	160	$3 \cdot 1$	$\therefore, \frac{1900}{190}$	$3 \cdot 1$	\cdots		9，304
5．	－ 11.3	$151)$	－${ }^{\text {－}}$	$16{ }^{\circ}$	－0．3	160	$3 \cdot 1$	2,400	$3 \cdot 1$	2.40 .1	1	9，800
6	－ 0.3	\because	-0.3	11	$-0 \cdot 3$	Ifil	$3 \cdot 1$	2,400	$3 \cdot 11$	$2,29,3$		10，300
\bigcirc	－${ }^{\text {－}}$	160	－0．3	164	-0.3	1611	$3 \cdot 1$	2，400	$3 \cdot 11$	－，	38	10，300
s	-0.3	161	－0．3	1	$-0 \cdot 3$	160	－0．3	1－111	$3 \cdot 11$	$\because, 29.1$	$3 \cdot 4$	！－．
9	－ 11.3	$!$	-0.3	169	－0．3	161	－ 11.8	161	$3 \cdot 11$	\cdots	$9 \cdot 4$	10，801）
10.	$-13 \cdot 3$	169	－ 1	i．1	－0． 3	169	-0.3	160	$3 \cdot 11$	\cdots	5． 5	11，300
11	－ 010.8	11	－11．3	1.1	-11.3	1 m	-11.3	190	$\because \cdot 1$	$2,4: 1$		11，50\％
12	－	161		$\because 1$	－	$\cdots 1$	－0．3	\therefore－		2.1211	S．${ }^{\text {a }}$	11，500
13.	－	\cdots	－0．$\%$	\cdots	－0．8）	： .1	－0．2	\cdots	$3 \cdot \underline{ }$	2，54，	，．	
14.	-10.8	160	－0．3	169	-10.3	1619	－（1）．2	\because	$3 \cdot \underline{ }$	3.510		12，800
15	－	$15^{\prime \prime}$	$-(1) 8$	． 1	2.7	1，904	－ 11.2	17.9	$3 \cdot 3$	2,504		12，心や
15.	－ $01 . ?$	1.1	-1	$16:$	$2 \cdot 7$	1.970	-11.0	17.5	$3 \cdot 1$	2.50	\cdots	12， 2011
17		． 1	－ 01.3	169	$2 \cdot 7$	1，9711	－11．2	1		3.171	，	13，3501
15		1690	-0.3	$\therefore 1$	$2 \cdot 7$	1，971				3.1191	4	13，3（1）
19	－11． 3	1 19：${ }^{\text {a }}$	－0． 8	$\therefore 1$	$2 \cdot 7$	1，97\％	$-11 \cdot 2$	17.0	$3 \cdot 6$	3， 29.1	： 1	13，3（1）
21.	－（1）$\%$	169	－11．3	$\therefore 1$	－ 11.8	1601	－（1）\because	11.	$3 \cdot 5$	3，2以	15．11	13，5191
21		16．										
22	－1	$\therefore=1$	－ 11.8	16）	－ 11.8	$1 i^{\prime} 1$	-11.2	17．）	$3 \cdot 5$	3，720	［1．	13，3011
－1	-11.3	18.9	－1）： 3	160	-11.8	10.10	$3 \cdot 7$	3，52，		3， 30	1－2	3，12：1
21.	-11.3	18i）	－0．3	1.1	－ 11.8	1.	$3 \cdot 7$	3，520	$3 \cdot 7$	3，760	$4 \cdot 3$	5,120
25.	$-10 \cdot 3$	161）	$-(1) .3$	16,0	－ 11.3	16：）	3.7	－3， 0^{3}	$3 \cdot 9$	1，（18）	$1 \cdot 1$	1．750
20	-11.3	16^{9}	-11.3	1611	－0．3	\because		3.5201	$3 \cdot 9$	1，（い）		4.4101
27	－（1）． 3	！ $6^{\prime \prime}$	－ 11.3	169	－ $11 \cdot 3$	16）	$3 \cdot 6$	3，23，	$1 \cdot 11$	4，40：	1．1）	4， 4 （1）
25	41） 1	1 fifl	－0） 3	164	-11.3	＂1－	\square	3， 291	$1 \cdot 1$	1，750	$1 \cdot 11$	4， $81(1)$
29.	-11.3	$16^{\prime \prime}$			$3 \cdot 1$	$2,29.1$	$3 \cdot 5$	3， 190	1.	て，（1）0		
39.	－11． 3	1611			$3 \cdot 11$	－ $3,24.1$	S． 1		1．4	T，心い		
31.	$-0 \cdot 3$	160			$3 \cdot 1$	$\underline{0} 29.1$			4.4	8.360		

I)ally Gatge Heights and Discharges of Adams River below Adams Lake for 1913-Concluded.

BARNES CREEK, NEAR ASHCROFT.
Locntion of Ǩution. - suction 11, tomnship 20, range 24, west bith meridian. about 5 miles southeast of Ashcroft, and just above Barnes lake.
 to December 14, 1913.

Winter Conditions.-Light snowfall and short periods of severe cold.
Gange.-Vertical staff gauge 5 feet in height, referred to bench-marks. fiangereadings have heen taken daily during the irrigation maton hy Johnsimith, Asheroft.

Chombl- The stream is straight for ahout loo foct ahove the measuring section and for jo feet below it. The water is swift and is well eonfined hy the bridge approaches.

Discharge Measurements.-Measurements are made by wading at the downstream side of the traffic bridge.

Accumety. Ficsults as shown are aceurate, as fair conditions formetering and gauge readings existed.

BARNES CREEK.

Barnes areek (sometimes called Pennics of Pemers creeki hat it - wure 10 the hills east of Asheroft, at an elevation of 4,000 feet. It dischatere into the 'Phompson river from the south, 4 miles east of Asheroft, at an elevation of 960 feet, and is part of the Thmmeon River drainage. The dramage area
above the mouth is 38 square miles, and above the gatuging station it is 35 square miles. The water is used for irrigation. It is a contentious stream, almost drying up in July and August. It lies in the dry belt, with a mean annual precipitation of about 9 inches. The summers are hot and dre and the winters cold and dry.

Barnes creek is about 12 miles long, about 12 feet wide, and its depth varies from 0.5 foot at low water to 1.7 foot at high water. Its mean velocity at high water is 3.5 feet per second.

The discharge fluctuates from practically zero in the winter to a maximum
 of May. Then it declines rapidly until it becomes as low as from 3 to 4 secondfeet about July 1, and all through the month. In the fall it rises for a short time. then recedes as winter and the cold weather comes in.

Water is diverted from Barnes creek near the headwaters, and is stored in the Twin lakes for use, near Wathathin. There is amother diversion to Barnm lake. From Barnes lake the water may be returned to Barnes creek, for use farther down the stream, or it may be run into Nelson creek for use in that direction. Usually there is a shortage of water on Barnes creek. But in 1912 Barnes lake filled and over-flowed and the water users were forced to ask that water be diverted to Twin lakes, though they had previously taken out an injunction against it.

The gauging station on Barnes creek is 200 yards above Barnes lake and 5 miles southeast of Ashcroft, B.C. It was established April 26, 1912, by C.G. Cline, and daily gauge readings were taken till the end of the irrigation season. The gauge is situated 150 feet above the first highway bridge over the main stream above Barnes lake. It is a 5 -foot staff gauge nailed to a small tree on the right bank of the creck. The measurements were made by wading at the downstream side of the bridgc. The stream is straight for about 100 feet above the measuring section, and for 50 feet below it. The water is swift. The mad has bere hailt un to form the approaches to the bridge, an! fhere in no danger of overflow. There is only one channel. which is about 6 inches deep at ordinary low water. The river just below the gauge should be examined occasionally to see that brush and logs do not collect on it and so back the water up on the gauge. This station gives the whole flow of the stream except what is diverted into the Twin lakes, near the headwaters of the stream, by the British Columbia Horticultural Estates of Walhachin.

Monthly Discharge of Barnes Creek above Barnes Iake, for 1913.
(Drainare area, 38 equare miles).

		Dischirge in Necond-Feet.				RじN-()fr.	
	Montit.	Mrximum.	Minimum.	\because	Persquare mile.	1)epth If. M1/ On Drainage area.	Total in acre-feet
\because		2	1	13.2	10.3.5	1).4)	213
June.		1	5	16.5	11	- 1	$1,(101)$
july		1	\because			- 1	111
		10			\%1.	IIII 16	. ${ }^{1}$
soptember		-		13	\%	11. $11{ }^{-}$	
() ctober....			:	$3 \cdot 6$	$11 \cdot$	$11 \cdot 11$	211
1) -cember.			3	$2 \cdot 4$	$11=1$	1). 111	?
							Estimatort

5 GEORGE V., A. 1915
Discharge Measurements of Barnes Creek above Barnes lake, for 1913.

Date	Hydrographer.	Meter No.	Width.	Area or Section.	$\begin{aligned} & \text { Mean } \\ & \text { Velocity. } \end{aligned}$	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
May 2	K. G. Chisholm.	1,055	$1{ }^{1}$	$5 \cdot 0$	1.05	$0 \cdot 43$	
June ${ }^{\text {ang. }} 14$.	do	1,055	\div	3. $\frac{15}{5}$	1.16	0.45 0.40	4.1

Daily Gauge Heights and Discharges of Barnes Creek above Barnes lake, for 1913.

SESSIONAL PAPER No. $25 f$
Daily Gatge Heights and Discharges of Barnes Creek above Bames lake. for 1913-Concluded.

BOLEAN゙ CREEK.
Location.-Section 9, township 18, range 12, west 6 th Meridian.
Records Available.-May 23 to December 31, 1911; January 1 to September 16, 1912; April 27 to September 19, 1913.

Winter Conditions.-Not very severe. Stream sometimes remains practically open all winter.

Gauge.-Vertical staff gauge read daily by Clement Stickney.
Channel.-The bed is of sand and gravel, the chamel being about 25 feet in width. Flow varies from a recorded minimum of 6 second-feet (arch 16 , 1912) to a maximum of 412 second-feet (Nay 161912.)

Discharge Measurements.-Nine discharge measurements have been made, but the curve is not very well defined.

Accuracy.-Accuracy of results appended is low, but they are probably within 15 per cent of obtaining conditions.

5 GEORGE V., A. 1915
Discharge Measurements of Bolean Creek, near Slahaltkan, for 1913.

	Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1911.		$\begin{aligned} & \text { W. MI. Carlyle. . } \\ & \text { do } \end{aligned}$	$\begin{aligned} & 1,044 \\ & 1,044 \\ & 1,044 \\ & 1,044 \\ & 1,044 \end{aligned}$	Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.ft.
May	2.3			24	58.5	3.15	${ }_{1}^{2 \cdot 2}$	183
Ju! ${ }^{\text {J }}$	12			23	$34 \cdot 6$	$2 \cdot 5$	1.81	127
Aug.	Of			17	$15 \cdot 1$	1.34	$1 \cdot 24$	$1.20 \cdot 3$
	2			16	11.8	0.86	1.02	10.1
$1!11$								
$\begin{aligned} & \text { May } \\ & \text { July } \end{aligned}$	$\begin{aligned} & 1 ; 3 \\ & 16 \end{aligned}$	C. E. Richardson do	$\begin{aligned} & 1,114 \\ & 1,048 \end{aligned}$	$\begin{aligned} & 25 \\ & 23 \end{aligned}$	$\begin{array}{r} 61 \cdot 2 \\ 518 \cdot 9 \end{array}$	$\begin{aligned} & 4 \cdot 3 \\ & 1 \cdot 66 \end{aligned}$	$\begin{aligned} & 2.55 \\ & 1.39 \end{aligned}$	$\begin{array}{r} 269.9 \\ 31 \cdot 4 \end{array}$
	1913\%							
Amril		H. J. E. Keys.	1,057	21	27.1	$\stackrel{2}{2} 10$	1.68	5
June		do	1,057	28	29.3	2-80	$2 \cdot 10$	\because

Note.- New section.

Monthly Discharge of Bolean Creek Riveir near Slahaltkan for 1913.
(Drainage area, S0 square miles.)

Monte.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
May	292	30	161	$2 \cdot 02$	$2 \cdot 33$	9,900
June.	272	93	151	1.89	$2 \cdot 11$	8,950
July.	179	26	67	$0 \cdot 84$	0.97	4,120
August.	39	14	24	$0 \cdot 30$	$0 \cdot 35$	1,480

SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of Bolean Creek near Slahaltkan for 1913.

Daili Gauge Heights and Discharges of Bolean Creek near Slahaltkan for 1913-Concluded.

BONAPARTE RIVER NEAR ASHCROFT.
Location.-Section 5, township 21, range 24, west 6th Meridian.
Records Available.--June 10 to Ňorember 6, 1911; March 25, to December 22, 1912; April 1 to December 31, 1913.

Winter Conditions.- A short and often severe winter with very light showfall. Ice conditions usually exist during January and February.

Gauge.-Vertical staff gauge. Daily readings by H. Collins during the open season.

Chamel.-The chamel is ahout an feet in width and is straight for several hundred feet above and below the gauge. The control is good.

Dischurge Measurement..- Measurements are made by wading in low water and by the "cable carrier" method in high water. Six well distributed measurements were obtained in 1913.

Accuracy. -The accuracy of the results obtained on this stream is high. The gatage height discharge curve is well defined and gatuge readings were carefully taken.

Ciental.-During 1913, the timber rock-fill dam on the Bonaparte river cof the Ashoroft Water, Electric and Improvement (ompany) failed, and the power plant has since been out of commission.

BONAPARTE RIVER.
The Bonaparte river rises in Bonaparte lake at an elevation of 3,800 feet, and discharges into Thompson river, near Ashoruft, at an elevation of 970 feet. Hat creek and Maiden creek (Craves creek) flow in from the west, and (athe creek and scottie creek from the east. The drainage area is 2.000 square miles. The water is used for irrigation and for water-power. An attempt was made at the power plant of the Ashoroft Water, Electric and Inprovement Company to pump water to the Boston flat by means of power ohtained from the river, but owing to the high head to which it was necessary to lift the water, the scheme was not succesful, since a large flow of water was required to supply the power.

The Bonaparte flows into the Thompson at Ashoroft, and drains a large watershed lying hetween the Fraser and the North Thompson. It the head Waters of several of its branches there are lakes varying in elevation from 2.000 to 3,000 feet. ()f these, Bonaparte lake is the largest, being ahout 10 mile long and 2 miles wide.

Near Asheroft the Bonaparte has worn a canyon and flows through it for 3 miles or so. The nower-house which formerly supplied Ashoroft with power and light is situated near the upper end of this canyon. There are other sites in the canyon. but it is doubtful if there will be much more power develonment on the stream hecause of the demand for water for irrigation. This power phant was out of commission in 1913, from a washout which took place in the spring.

Below the canyon there is some good land. The bottom land is being cultivated and irrigated, but the higher benches are arid. About wimiles from the mouth of the river the ralley widens out, and for 15 miles there is a fine streteh of good country. The Cariboo road runs up the valley, and atood dowl of the land was taken up in the early days of the province. Even now it is the traffic on this road to Fort George and the northern interior that is the lareest factor in the prosperity of the Bonaparte valley. The passengers are carried by automobiles. and make the run through to the boat landing at somba mook on the Epper Fraser in one day: But the freighting is still done entirely he horese and watoms. Theme outfits travel about 20 miles a day, and furniob a wood marken for hay and oats.

The Bonaparte valley is in the dry belt. During the growing season there is almost continuous sunshine, with very little rain (8 or 10 inches). As a consoquence nothing will grow without irrigation. But the soll is naturally rich, and when water is supplied, the growth is rapid. At present most of the lower land in the Bonaparte and tributary valleys is under cultivation, and the water supply is about sufficient under the present methods of irrigation. There is much grood land on the higher benches and in the sembin valley and Boeton flat which could he irrigated be a long flume from the Bomatarte river. There is sufficemt water in the river if the storage on the lakes is utilized, and by constructing one system to serve all, the price per acre would not be excessive. Potatoes do exeeptionally well on this land, and Asheroft potatoes have quite a reputation and hring the highest prices. In the summer, larece herds of eattle feed on the good pathurage back on the bills, but they must he fed durine the winter, and this makes good market for hay, so that even now the Asheroft district is a good farming conntry, and could he made much teettor hat exten-ive irrieation system.

Twenty miles from the mouth, the wagon road leaves the Bonaparte valley and climbs to the plateau. This is quite near the boundary of the Railway Belt, so that the best part of the valley is inside this belt. North of the boundary the altituke is higher, the precipitation som what heavier, amb thew is mome timber. It is in this part of the waterehed that all the lahw lie. 'There is oplemdidfishing
 for the winter. The Cariboo road does not touch the main stream outside the Railway Belt, and the only means of travelling is by pack trains.

The gauging station on the Bonaparte is at Mr. J. G. Collin's ranch, about 6 miles from the mouth of the stream. It is above the Ashcroft power-house and not far from the upper end of the canyon. The gauge is a five-foot vertical staff nailed to some small trees on the right bank of the stream at Collin's house. It is referred to three bench-marks so that any change of elevation can be detected and corrected. The meter measurements are made at a section about 100 feet above the gauge, where a wire has been stretched across the stream. At high water a carrier is put on this wire and the meter suspended from it by a cable. At low and medium stages the measurements are made at the same section by wading. The channel above the section is straight for 100 feet, and the water is swift. Below the section the channel is straight for 150 feet, and the water swift, though obstructed by one or two boulders. The right bank is 2 feet high, with a fringe of bushes and small trees, at very high stages the water might rise into the bushes. The left bank is 4 feet high and covered with bushes and trees. There could be only one chamnel even at high water. The bed of the stream is rocky and the water about 2 feet deep at ordinary stages. At the highest stages it is impossible to wade it. At very low water it might be necessary to remove a few shovelfuls of mud to keep open the communication between the little pool in which the gauge is placed and the main stream. At ordinary stages the gauge is in the main stream itself.

Discharge Measurements of Bonaparte River at Collin's Ranch, for 1913

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height	Discharge.
1913.			Feet.	Sq. ft	Ft. per sec.	Feet.	Sec.-ft.
April 25.	Chisholm \& Cline	1,055	54	153.4	$4 \cdot 35$	2.96	${ }^{1667}$
May 3	do do	1,055	48	114	$3 \cdot 6.3$	$2 \cdot 30$	415
May 19	K. G. Chisholm.	1,055	54	154	$4 \cdot 30$	$2 \cdot 81$	664
May 27	do	1,055	54	160	$4 \cdot 65$	2.99	745
July 31.	do	1,053	45	81	$2 \cdot 97$	1.76	${ }^{2} 23.3$
Oct. 3 .	do	1,055	37	51	1.67	1.09	\therefore

Note. - 1 Cable measurement.
2 Wading measurement.

Monthly Discharge of Bonaparte River at Collio's Ranch for 1913.
(Drainage area, 2,000 square miles.)

	Month.	Dischatice in Second-Feet.				Run-Off.	
		Maximum.	Mirimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
April.		88.5	124	405	$0 \cdot 20$	0.22	24,278
Mas!.		650	340	553	0.28	$0 \cdot 32$	34,003
Juni		(1.5) 5	340	486	0.24	0.27	2S,919
July .		540	230	399	0.20	0.23	24,534
Ausumet		245	145	184	U-09	$0 \cdot 10$	11,314
September		145	s0	114	$0 \cdot 0.5$	0.06	6,185
October.		124	72	106	0.05	0.06	6,518
November		115	80	100	$0 \cdot 05$	$0 \cdot 06$	5.950
Derember		105	72	S6	0.04	0.05	5,288

SESSIONAL PAPER No. 25 f
Daily Gatge Heights and Discharges of Bumaparte River 5 miles from mouth for 1913.

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Bonaparte River 5 miles from mouth for 1913-Concluded.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge.	Gauge Height.	- Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	$2 \cdot 6$	340	1.7	215	$1 \cdot 4$	14.5	1.05	80	$1 \cdot 2$	10.5	$1 \cdot 2$	10.5
2	$2 \cdot 5$	495	$1 \cdot 65$	202	$1 \cdot 35$	13.5	$1 \cdot 0$	72	$1 \cdot 2$	105	$1 \cdot 15$	96
3	$2 \cdot 6$	540	$1 \cdot 6$	190	$1 \cdot 35$	135	1.05	80	$1 \cdot 2$	105	1.15	96
4	2	517	$1 \cdot 6$	190	1-3	124	$1 \cdot 1$	87	$1 \cdot 2$	105	$1 \cdot 1$	87
5.	$2 \cdot 5$	495	1.6	190	$1 \cdot 3$	124	1.1	87	1.25	115	$1 \cdot 1$	87
6	2.45	475	1.5.)	175	$1 \cdot 3$	124	$1 \cdot 1$	87	$1 \cdot 2.5$	11.5	$1 \cdot 1$	37
7	$2 \cdot 4.5$	475	1.5 .5	178	$1 \cdot 25$	115	$1 \cdot 1$	87	$1 \cdot 25$	115	$1 \cdot 1$	87
-	$2 \cdot 4$	45.5	1.5 .5	178	1.25	115	$1 \cdot 1$	87	1.25	115	1.1	87
9	$2 \cdot 4$	4.5	1.5	166	1.25	115	$1 \cdot 15$	96	1.2	105	$1 \cdot 1$	87
10.	$2 \cdot 35$	435	1.5	166	$1 \cdot 2$	105	1.15	96	1.2	105	$1 \cdot 1$	87
11.	$2 \cdot 3$	41.5	$1 \cdot 5$	166	$1 \cdot 2$	10.5	$1 \cdot 15$	96	$1 \cdot \underline{3}$	10.5	$1 \cdot 05$	79
12	$2 \cdot 25$	387	1.5	166	$1 \cdot 2$	105	$1 \cdot 2$	105	$1 \cdot 2$	105	1.05	79
13	$2 \cdot 3$	415	1.85	178	$1 \cdot 2$	105	$1 \cdot 2$	105	$1 \cdot 15$	96	$1 \cdot 1$	87
14	$2 \cdot 35$	435	1.85	178	1.2	105	1.2	105	1.1.5	96	1.1	87
15	$2 \cdot 45$	475	$1 \cdot 5$	166	$1 \cdot 2$	105	1.25	115	1-1.5	96	$1 \cdot 1$	51
16	$2 \cdot 5$	49.5	1.5	166	$1 \cdot 2$	10.5	1-2.5	11.5	$1 \cdot 95$	11.5	$1 \cdot 1$	87
17	$2 \cdot 4$	455	1.5 .5	178	$1 \cdot 15$	96	1.3	124	1.25	115	$1 \cdot 1$	S7
18	$2 \cdot 35$	435	$1 \cdot 16$	190	$1 \cdot 15$	96	$1 \cdot 3$	124	1.15	96	$1 \cdot 1$	87
19	\cdots	41.5	1-6.5	202	$1 \cdot 1$	4	1.3	124	$1 \cdot 1$	ni	$1 \cdot 1$	si
20.	$2 \cdot 3$	415	1.7	215	$1 \cdot 1$	S7	$1 \cdot 3$	124	$1 \cdot 07$	82	$1 \cdot 1$	87
21.	$2 \cdot 2$	350	1.8	245	$1 \cdot 15$	96	$1 \cdot 3$	124	1.05	80	$1 \cdot 1$	87
22.	$2 \cdot 15$	360	1.8	245	$1 \cdot 15$	96	$1 \cdot 3$	124	$1 \cdot 05$	S0	1.1	S
23.	$2 \cdot 1$	340	1.7	215	$1 \cdot 15$	96	1.3	124	$1 \cdot 1$	\cdots	$1 \cdot 1$	87
24.	$2 \cdot 0$	310	$1 \cdot 6$	190	$1 \cdot 15$	96	$1 \cdot 3$	124	$1 \cdot 15$	97	$1 \cdot 05$	79
25.	$1 \cdot 95$	292	1.55	178	$1 \cdot 1$	87	$1 \cdot 3$	124	$1 \cdot 1$	87	$1 \cdot 2$	105
26	1.85	260	1.55	178	$1 \cdot 1$	87	$1 \cdot 25$	11.5	$1 \cdot 1$	87	1.15	96
27.	$1 \cdot 3$	245	1.5	166	$1 \cdot 1$	87	$1 \cdot 25$	11.5	$1 \cdot 05$	79	1.02	75
28	1.4	245	1.5	166	$1 \cdot 1$	87	$1 \cdot 25$	115	$1 \cdot 1$	87	$1 \cdot 0$	72
29.	1.75	230	1.4.5	155	1.1.5)	S0	$1 \cdot 25$	115	$1 \cdot \underline{ }$	105	1.0	72
30.	$1 \cdot 75$	230	1.45	155	$1 \cdot 05$	S0	$1 \cdot 25$	115	1.25	115	$1 \cdot 0$	72
31.	1.75	230	1.4	145			1.2	10.5			1.0	72

CAMPBELL CREEK。

Location.-Section 22, township 19, range 16, west 6th meridian.
Records Available.-May 27 to October 4, 1911; April 1 to September 16, 1912; May 1 to August 31, 1913.

Winter Conditions.-Creek is usually frozen up during December, January, and February and there is little or no run-off in November and March.

Gauge.-Vertical staff gauge read daily by A. Holt.
Channel.-The channel is about 15 feet wide at the gauge. Flow varies from zero to a maximum of 48 second-feet (recorded on May 28, 1912).

Discharge Measurements.-The curve for 1913 is poorly defined, having only three meterings. A shifting channel at the gauge section was a source of considerable trouble.

Accuracy.-The returns for 1911 and 1912 are of high accuracy, but results for 1913 are poor, and very little reliance can be placed upon them. They are probably within 20 per cent of the truth.

CAMPBELL CREEK。

The right branch of Campbell creek rises in the Camphell meadows at an elevation of 2,200 feet: the stream discharges into the South Thompson at an elevation of 1,140 feet. Campbell creek is in the eastern portion of the dry belt, the ammal precipitation at the mouth being from s inches to 10 ine hes. and at the headwaters from 12 inches to 15 inches. Campbell creek is a very contentious irrigation stream. The Hydrographic survey has two stations on it, one at Todd's Corners and the other at the Campbell Estate at the mouth. The latter for the purpose of making a study of seepage loss. A slight decrease in discharge is found between the two stations, a portion of the flow of ('amphedr creek joining the Thompson river as underground water.

The upper reaches of the creek are well timbered with British Columbia fir, jack pine and spruce, and there are large lakes at the head of Campbell creek proper. These lakes are Trapp, Shumway, and Napier. Their superficial area is large, and evaporation in this dry country is great. In the season of 1911 the run-off from these lakes was nil, all Campbell creek water coming down seuittoe arek (the right branch of ('amphell creek from the ('amphedl meadows. The lakes are unreliable for storage purposes.

The Campbell estate holds the prior records on this stream, and controls pratically the whole flow of ('amphell creek.

The Campbell estate has constructed a small dam on Campbell meadows, where water is stored and is used in the late summer for irrigation.

At the height of the irrigation season (June 7) the two diversions above the station at Todd's Corners were carrying 4.5 second-feet; at no time did they exceed this amount, which is about their mean flow for the irrigation season.

The daily flow of Camplell creek, especially in the late summer, is not the true nomal diecharge of the stream hat depemels umen the artificial rontrol of the storage reservoir.

The station at 'Todd's Corners was established on May 27, 1911, by C. E. Rieharden, atm daty gatuer reading: were taken during the irrigatom crabons of 1911, 1912 and 1913. It is located at the highway bridge on the KamloopsCrand Prairie road.

The gauge is a 5 -foot standard vertical staff gauge, and is in a pool at the right side of the stream just below the bridge. In high water, measurements of the flow are made from the bridge, and in low water, by wading below the bridge. The Creek runs through a meadow but the banks are well defined and there is no danger of overflow.
2.) F - $1:$

The station at the Campbell estate is at the mouth of a canyon one quarter of a mile above the Kamloops-Ducks highway. The gauge is a standard vertical staff securely wedged in the rocks at the right bank of the stream.

Measurements are made by wading, the channel being well confined in high rocky banks, and the bed being very rough and rocky. Three benchmarks are located at each station and referred to the gauge datum.

Gauge readings were taken at this station from May 25 to September 20, 1911, and from May 10 to September 1, 1912.

Discharge Measurements of Campbell Creek, near Todd's Corners, 1913.

	I)ate.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	$\begin{aligned} & \text { Mean } \\ & \text { Velocity. } \end{aligned}$	Gauge Height.	Discharge.
				Feet.	sq.-ft.	Ft. per sec.	Feet.	Sec.ft.
May	3	H. J. E. Keys	1.153	4	1.7	5-8	1.103	$9 \cdot 65$
May	3	do	1,057	4	$1 \cdot 6$	$5 \cdot 7$	1-113	9.16
May	29	do	1,057	16	$1 \cdot 49$	$1 \cdot 5$	1.68	$22 \cdot 4$

Note---(iange Reader-A. Holt.

Monthly Discharge of Campbell Creek near Todd's Corners for 1913.

		Discharge in Second-Feet.				Rus-Off.	
	Mosth.	Maximum.	Minimum.	Mean Yer square mile.	Mean.	Depth in inciles on Drainage area.	Total in acre-feet.
May		$23 \cdot 7$	$6 \cdot 5$	$10 \cdot 6$. 05	-06	(in)
June		24.8	$10 \cdot 2$	$15 \cdot 9$	-08	. 199	! 414
July .		13.9	$8 \cdot$	$10 \cdot 3$	- 05	-06	633
August		$8 \cdot 8$	5.5		. 0.3		424

[^11]SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of Campbell Creek near 'Todd's Corners for 1913.

	May		June.		July.		August.	
	Gauge Height	Dis- charere	Gauge Heinht	Discharge	$\begin{gathered} \text { Ciauge } \\ \text { Herrht } \end{gathered}$	Discharge	(iaure Height	Discharge
		Sec.-ft.		Sec. ft.		Sec.ft.	Feet.	Sec-ft.
1	11.8 .5	7.1	1.74	$24 \cdot 11$	$1 \cdot 20$	11.7	0.9	$7 \cdot 6$
-	11.	$7 \cdot 2$	1.73	23.7	$1 \cdot 20$	11.7	$1 \cdot 11$	-.
\%	11.95	$8 \cdot 1$	1.73	24.	$1 \cdot 20$	11.7	1.11	S-8
4	$1 \cdot 1 i$	11.1	1-tio	21.1	1-11	11.7	1.11	\bigcirc
.	1.13	111. ${ }^{\text {i }}$	1. i 1	17.9	$1 \cdot 20$	117	$1 \cdot 11$	-
1	$1 \cdot 1.5$	9.5	1.47	$17 \cdot 1$	$1 \cdot 20$	11.7	11.9	-.1i
-	11.19	- 1	1.42	$15 \cdot 9$	$1 \cdot 1.7$	1111	11.9	7 3
,	1 (17)	4	$1 \cdot 30$	$13 \cdot 5$	1.111	10.2	111	s.s
'	1. (1)	$8 \cdot 8$	1.3.1	17.7	1.11?	41	11.94	$5 \cdot 4$
111	1-112	9. 1	1.15	$17 \cdot 3$	11.10%	S-2	0.92	7
11	1.11%	9.5	1.95	19.4	1-11!	$9 \cdot 1$	0.86	-
12	$1 \cdot 11.5$	9.5	1-9	18.2	1.15	11.11	11.5	7-1
13	1.11 .5	$9 \cdot 5$	1.50	17.7	$1 \cdot 25$	$12 \cdot 6$	(1. 5.5	7. 1
14	11.98	$8 \cdot 6$	1.47	$17 \cdot 0$	13	13.5	11 -	i. ${ }^{\text {a }}$
1.5	- 0.9 .9	$8 \cdot 2$	1.4 .5	16.fi	1-32	13.9	11.)	ii.
$11 i$	(0) 42?	$7 \cdot 8$	150	$17 \cdot 7$	1.20)	11.7	11.82	1i.
17.	11.92)	7.4	1.4 .5	16.16	11.98	- ${ }^{1}$	11. 411	1i.ti
1	(1.90	$7 \cdot 1$	1.4 .5	16.1i	11.91)	\checkmark,	1111	1i.4;
19.	11.87	$7 \cdot 3$	$1 \cdot 45$	16.6	$1 \cdot(1)$	\cdots	11.7	1.4
20.	11.85	$7 \cdot 1$	1 . 50	17.7	$1 \cdot 10$	8.8	11.7	6.4
21.	11.92	13.9	$1 \cdot 30$	13.5	1.115	$9 \cdot 5$	0.75	$6 \cdot 2$
22	11.5	$7 \cdot 3$	$1 \cdot 20$	11.7	1111	10.2	11.75	(1). 2
? 3	1.11.5	9.5	1.12	10.5	1111	$10 \cdot 3$	11.72	1i.1)
24.	$1 \cdot 17$	11.3	$1 \cdot 15$	11.11	$1 \cdot 111$	$10 \cdot 2$	11.72	1i.11
25.	126	$12 \cdot 8$	$1 \cdot 17$	11:	$1 \cdot 111$	$10 \cdot 2$	1).72	(i.) 1
291	$1 \cdot 9$	12.19				4.14	0.72	
27.	1.32	$13 \cdot 9$	1.10	111.9	1.112	41	11.72	(i. 11
28.	1.41	$15 \cdot 7$	1.10 1.111	111.2	1.111 1.111	S. S.	(1). 12.8	6.0 -19
. 311	1.83 1.8	14.4	$1 \cdot 11$ $1 \cdot 1.5$	$10 \cdot 2$	1.1111 1.010	S.4	11. 11.6	\%
:1	1.73	23.7			0.96	\therefore	11.65	5.5

CHERRY CREFK。
Location.-Section 34, township 19, range 19 , west 6 th, meridian.
Records Available.-June 5 to September 1, 1911; April 24 to September 15, 1912; April 19 to October 19, 1913.

Winter Conditions.-Stream is generally dry during October, November, December, January, and February. Winter conditions are not usually very severe.

Gauge.-Vertical staff gauge read daily by Henry Cornwall.
Channel.-The channel is about 10 feet wide. The maximum recorded flow was 200 section-feet, caused by the failure of a dam on Chuhwhels lake. The normal maximum is uncertain owing to the fact that the flow is artificially controlled.

Discharge Measurements.-It has been necessary to make numerous meterings, as continuous trouble has been met on account of the constant shifting of the stream-bed and washing out of gauges.

Accuracy.-The accuracy of results appended, on account of conditions mentioned above, is low. Returns, especially during high water, may be in error to 20 per cent.

CHEIRIV CREFK。
Cherry creek has its source in the hills south of Kamloops lake, at an elevation of 3,800 feet, and discharges into Kamloops lake, at an elevation of 1,120 feet. It is part of the Thompson drainage; the drainage area, as measured
$2.5 \mathrm{~F}-1.3 \frac{1}{2}$
from the Geological Survey map, dated 1895, scale 2 miles to 1 inch, is 70 square miles; of this area 33 square miles is above the gauge. Cherry creek has the following tributaries: Alkali creek, entering from the left, Dairy and Pendleton creek from the right, going upstream. Cherry creek, as well as its tributaries, is situated in the most arid section of the dry belt; the summers are hot and dry, the winters long and cold ($-20^{\circ} \mathrm{F}$.) : the precipitation varies from 8 inches, near the mouth, to 12 inches at the headwaters.

Cherry creek is a contentious irrigation stream about 12 miles long. The upper 6 miles consists of dry range hills, with little irrigable land, but the lower half of the stream flows through wide benches, which only required water to hecome fertile agricultural lands. In a wet season like 1912, the creek will run for six or seven months at the station; in a dry season the stream camot be depended on for more than three months. and then for a mean discharge of only 2 second-feet. In different sections of the stream conditions vary; near the mouth the creek runs all year; in other places the stream will be absolutely dry, while ruming a hundred yards above and below. Apparently there is a large amount of seepage in proportion to the size of the stream and this fant makes the measurement of the discharge very difficult. ('herry creek has excellent storage facilities in the following lakes: Big Meadow reservoir with a capacity of 1,250 acre-feet; Chuhwhels lake with a capacity of 525 acrefeet; Roper lake with a capacity of 525 acre-feet; Andrew lake and Cornwall lake, which have not been dammed as yet. These lakes, however, are so far apstrean that their catchment basins are small, and only a little water can be ronserved, the reservoirs rarely filling to their capacity. Cherry creek is greatly over-recorded; the many records on the creek call for over 4,400 miners inches, or over 120 second-feet, while the mean flow of recent years has been less than 10 second-feet during the whole irrigation season. To further increase the water supply of the Cherry Creek district, records were taken out hy Cherry creek interests to divert water from Big Fish and Face lakes, which lakes are part of the Guichon drainage area, flowing southerly into the Nicola district. It is proposed to divert the water of these lakes across the divide and in a northerly direction of the Beaton and Cherry Creek estates: (for further information see remarks on (ireenstone creek.) On May 15, 1912, during the freshet, the storage dam on C'huhwhels lake failed and washed out the gauge and the chamel, too, was entirely altered. The dam was rebuilt in the summer of 1914.

The river station on Cherry creek was established June 5, 1911, by W. M. (arlyle. The measuring section is located above all diversions on the Fensington ranch, just beside the gauge. The gatuge is fastened about 100 feet above the Cornwall diversion on the right bank. The gauge was washed out by the above mentioned dam failure, and a temporary one was located to somplete the year 1912. All the measurements are made by wading; this would make an excellent measuring section, but for the possibility of seepage. The control is good, the current uniform, the hanks high, and there is only one channel. The datum of the gauge is referred to three bench-marks.

SESSIONAL PAPER No. $25 f$
Discharge Measurements of Cherry Creek at Kensington Ranch, 1913.

	Date.	Hydrosrapher.	$\begin{gathered} \text { Meter } \\ \text { No. } \end{gathered}$	Width.	Are:t of section.	Mean Velocity.	Gauge Height.	Discharse.
				Feet.	Sq.-ft.	Ft. per sec.	Feet.	Sec.-ft.
May	1	H.J. F. Feys.	1,057	$7 \cdot 0$	2.4	$2 \cdot 1$	1). 33	16.2
June	\because	do	1.057	$8 \cdot 1$	4.1	$2 \cdot 7$	(1).52	11.9
June	12.	do	1,057	$6 \cdot 11$	$2 \cdot 4$	$1 \cdot 5$	0.4	3.3
July	17	do	1,057	$5 \cdot 0$	$2 \cdot 2$	$2 \cdot 9$	(1).0.	16.3
Aug.		do	1,057	$4 \cdot 5$	24	$4 \cdot 9$	(1) (1)2	11.7
Sept.	4	do	1,057				11.36	\cdots

Note.- New Gauge
${ }^{2}$ Different section.
${ }^{3}$ Estimated.
Gauge Reader-Henry Cornwall.
Stream bed shifted in freshets and new gauges had to be installed and new rating tables constructed.

Doxthly Discharge of Cherry Creek at Kensington Ranch for 1913.
(Drainage area 33 square miles)

		Disimarge in Mecond-Feet.				Run-off.	
		Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
May		34	4.11	18.7	(1.57	(1). 66	1,150
June		46	(1). 2	7.5	(1.23	$0 \cdot 6$	446
July		41	$3 \cdot 4$	20.5	(1). 82	0.71	1,260
Auguer		311.7	11.6	4.9	(1.15	(1) 17	301
September		11.6	(1. 3	0.5	(1) (1)	(1) (1)	29

Note.-This stream is controlled by dams on the lakes near its source. The station is above all diversions.

5 GEORGE V., A. 1915
Daily Ciacie Heights and Discharges of Cherry Creek at Kensington Ranch for 1913.

		April.		May.		June.	
	1.1\%.	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge.
		Feet.	see -ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.				$1 \cdot 65$	$5 \cdot 6$	0. 55	13.4
\because				1 . 6.5	$5 \cdot 6$	(1.52	11.1
3.				$1 \cdot 6.5$	$5 \cdot 6$	0.5	9.5
4.				$1 \cdot 62$	$4 \cdot 6$	0.5	$9 \cdot 5$
3.				$1 \cdot 62$	$4 \cdot 6$	$0 \cdot 49$	8.9
1				$1 \cdot 62$	$4 \cdot 6$	$0 \cdot 49$	- 9
7.				$1 \cdot 60$	$4 \cdot 0$	$0 \cdot 42$	4.8
8.				$1 \cdot 67$	$6 \cdot 2$	0.45	$6 \cdot 6$
9.				1.82	$12 \cdot 4$	$0 \cdot 42$	4.8
10.				$2 \cdot 17$	$30 \cdot 2$	0.45	$6 \cdot 6$
11				11.4	$34 \cdot 0$	0.42	1.5
13				0.8	$34 \cdot 0$	$0 \cdot 40$	$3 \cdot 6$
13.				0.75	30.5	0.4	$3 \cdot 6$
14				(1.72	$27 \cdot 8$	0.4	$3 \cdot 6$
15.				$0 \cdot 68$	$24 \cdot 3$	0. 35	$\underline{-3}$
				0.65	21.6	0.35	$2 \cdot 3$
17				11.15	$17 \cdot 3$	$0 \cdot 35$	$2 \cdot 3$
18.				11.6is	$19 \cdot 1)$	(1.34	$2 \cdot 6$
19.		1.7	$7 \cdot 2$	(1.fil	$19 \cdot 0$	11.34	$2 \cdot 0$
21		$1 \cdot 3$	11.5	$0 \cdot 62$	19-()	$0 \cdot 45$	$3 \cdot 0$
21.		1.9	$16 \cdot 0$	0.62	19.0)	0.45	6. 6
22.		$1 \cdot 7$	11.5	0.62	$1!1 \cdot 1$	$0 \cdot 45$	7-1
23.		1.7.5	9.3	11. in	$24 \cdot 3$	$0 \cdot 46$	$7 \cdot 1$
24.		1.75	9.3	0.68	24.3	$0 \cdot 55$	11.8
25.		1.7	$7 \cdot 2$	0.72	$27 \cdot 4$	0.55	$13 \cdot 4$
26.		1.7	$7 \cdot 2$	0.72	$27 \cdot 8$	0.95	$46 \cdot 0$
27.		1.7	$7 \cdot$	11.7	$2{ }^{2} \cdot 11$	1). 60	$17 \cdot 3$
28.		1.7	$7 \because$	$0 \cdot 68$	24.3	0.22	1.7
29.		1.7	$7 \cdot$	11. 1.5	21.6	(). 2	$0 \cdot 3$
30.		1.7	$7 \cdot 2$	(1) fiz	$19 \cdot 0$	0.15	$0 \cdot 2$
31.				11.3!	16.5		

Dally Ciage Heights and Discharges of（＇herry（＇reek at Kemsington Ranch for 1913．－．C＇ontimuerl．

	July．		August．		September．		（）ctober．	
	（i：11以い Hobeht	Dis－ charge	（iatura Heloht	Dis－ What＂．	Gauge Height．	IDin charge	（ B auge Hebinht	1）1－ －hatiot
	Feet．	Sec－ft．	F゙いで	sec－ft．	「いけ	sec．－ft．	Feet．	Sece．ft．
1	$1 \cdot 0$	S11．11	11.1	1411	1135	（1） 6	（1） 1	11.3
2	11．11）	16.6	11.11	1115	（1）35	（1）． 6	（1）． 4	11． 3
3	11.05	14.2	11.1	17	$11: 3$	（1）． 6	11． 1	11.3
$\underline{1}$	11.05	14．？	$0 \cdot 25$	11	11.35	1）．6	11．35	111
i	11.11	111.8	U． 1	17	（1） 3.5	11.6	11.38	11.3
1.	11.07	1i．s	$0 \cdot 11$	111.5	11.3 .5	$11 . \mathrm{i}$	（） 1	$11 \cdot 3$
7	1.05	11.	（1）． 11	$10 \cdot 5$	11.35	$11.1 i$	11.1	11.3
\checkmark	（1．1．5	$13 \cdot 4$	11.0	10.5	11.35	$0 \cdot 6$	11． 41	11.3
9.	11． 1.5	$13 \cdot 4$	$0 \cdot 1$	17	11.1 .5	11.6	（1．+1	（1）\because
10.	11．1．j	$13 \cdot 4$	11.1	$4 \cdot 7$	1135	11.6	（1） 41	11．3
11.	11.15	$3 \cdot 4$	0． 1	17	1135	$0 \cdot 6$	（1）．4．5	11．：
12.	11．1．）	$3 \cdot 4$	$0 \cdot 05$	$7 \cdot 6$	11.3	（）． 6	11.45	11．2
13.	11.15	$3 \cdot 4$	（1．2）	$2 \cdot 1$	11.05	（1）．6	0． 45	$0 \cdot 2$
$1 \pm$	$11 \cdot 11$	111．5）	11．3	11.	11.35	$0 \cdot 6$	（1）． 15	$0 \cdot 2$
15.	（1．11：	\cdots	11.3	（0． 8	11.35	11.10	（）． 4.5	$0 \cdot 2$
17	（1．1．）	$22 \cdot 2$	11.3	$0 \cdot 8$	1135	11.19	11.75	
17.	（1． 17	－4．	11．25	$1 \cdot 1$	11.37	0.5	11． 16	0.1
11	（1） 13	$20 \cdot 5$	（1．2．）	$1 \cdot 4$	11.37	11.5	11． 16	11.1
19	11.13	20.5	11.25	$1 \cdot 4$	11.37	（1．5		
$\therefore 1$	11.18	24.8	11.3	11.5	（1） i^{-}	11.5		
$\because 1$	（1） 2	26.5	11.3	11.	11.37	$0 \cdot 5$		
\therefore	0． 2	26.5	11.32	11.7	11.37	0.5		
23	11．${ }^{1}$	26.5	11.32	11.7	11.37	$0 \cdot 5$		
$\because 1$	11． 21	325	（1．3）	0.7	1137	0.5		
25.	11.28	32.5	（1．13）	$2 \cdot 9$	1138	11.1		
$\because{ }^{-1}$	11．3）	$3.5 \cdot 1$	（1．0）	111 i	1138	11.4		
27	$11 \cdot 3$	$35 \cdot 0$	$0 \cdot 25$	30.7	111	11.3		
\cdots	11．38	$41 \cdot 1$	11．32	11.7	11.4	10.3		
$2!1$	11.3 .5	$39 \cdot 2$	（1）．35	$0 \cdot 6$	（1） 1	$11 \cdot 3$		
30	11．35	34.2	（1）． 3.0	11.6	1） 1	$0 \cdot 3$		
$\therefore 1$	（1） 1.5	22.2	11.35	$0 \cdot 6$				

COLDWATER RIVER AT MERIRITT。
Location．－The station is located at Merrirt，B．（．，on the Nicola Valley branch of the Canadian Pacific Railway．It is about half a mile above the stream＇s confluence with the Nicola river．

Records Available．－April 17 to August 31， 1913.
Winter Conditions．－There is some severely cold weather during the winter months，and the stream is said to be usually frozen over in January and February．

Gauge．－Gauge is a vertical staff gauge，and was reat during 1913 by D． McNeill．John Skimming is qauge reader for 1914.

Channel．－The stream is 50 to 75 feet in width，and its bed is stony． Velocities vary from 0.8 to $5 \cdot 0$ feet per second．During 1913 the maximum flow was 2,650 second－feet，while the minimum recorded flow was 40 second－ feet．

Discharge Measurements．－Meterings are made by wading，during low stages，and by cable suspension from the upstream side of the traffic bridge at high water．The gauge－height－discharge curve is not well defined at present，

Accuracy．－Accuracy of results as shown cannot be vouched for．They are probably within 15 per cent of the truth．
（ieneral．－The Coldwater river（according to the Dominion sectional maps） has a drainage area of about 360 square miles．Rising in the Anderion River
hills (near the source of the stream of that name tributary to the Fraser) at an elevation of 6,000 feet, it flows northeast for a distance of 35 miles, joining the Nicola at the town of Merritt. The gauge was established by P. De Lautour on April 17, 1913. The waters of the Coldwater are utilized to some extent for irrigation, but there is no possibility of contention from this source. Their only probable use is as a source of water-power.

Discharge Measurements of Coldwater River near Mouth, 1913

	Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
	1913.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
April	17	P. DeLautour.		66	98		0.25	24.3
	29	do	.	67	127		0.50	396
May	\because	do		66	106		0.30	307
	10	do		73	187		$1 \cdot 60$	1.130
".	14	H.J.E. Keys	1,057	65	202	$5 \cdot 0$	$1 \cdot 23$	1,010
"	16	do	1,057	63	160	$5 \cdot 2$	$1 \cdot 05$	836
"	26	do	1,057	71	281	$6 \cdot 6$	$2 \cdot 35$	1.850
"	27	P. DeLautour		80	304		$2 \cdot 50$	1,980
June	3	do		125	337		3.35	2,390
July	29.	H.J. E. Keys	1,057	60	94	$1 \cdot 3$	(1). 15	122
Aug.	20.	do	1,057	59	72	0.8	$0 \cdot 2$	56

Monthly Discharge of Coldwater River at Mouth for 1913.
(Drainage area, 360 square miles.)

Month.	Discharge in Second-Feet.				Revorf.	
	Maximum.	Minimum.	Mean.	Per square mile	Depth in inches on Drainage area.	Total in acre-ipet.
May	2,180	260	1,074	$2 \cdot 97$	$3 \cdot 12$	60,04)
June.	2,650	1,040	1,511	$4 \cdot 20$	4.69	89,910
July.	1,040	150	437	1.21	$1 \cdot 39$	20.851
August.	135	40	52	$0 \cdot 14$	$1 \cdot 16$	3.14%

[^12]SESSIONAL PAPER No. 25 f
Daily Gauge Heights and Discharges of Coldwater River at Mouth for 1913.

		April.		May.		June.		Jul: .		August.	
	Dat.	Gause Height	Di- charger	(istuge Height	I) 1 Chara	Gauge Height	Discharge.	(iatuge Height	I Ischarge	Gauge Height	1)!che:
		Feet	sec.-1t.	Fiet.	sec. -ft .	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1					300	$2 \cdot 7$	2,140	$1 \cdot 3$	1,040		1 5
2				11.3	260	$2 \cdot 9$	2,300	$1 \cdot 0$	Stil		1211
3.					260	$3 \cdot 35$	2,650	$0 \cdot 9$	720		10%
4					$\div 6$	$3 \cdot 1$	$\bullet, 460$	11.5	(i.) 11		(1.)
5.					260	$2 \cdot 5$	1,950	11.7	570		N1
1				11.3	260	$2 \cdot 1$	1,670	0.9	720		71
7.				11.5 .5	450	$2 \cdot 2$	1,750	1.11.5	840		85
3.				1.65	1,320	$2 \cdot 2$	1,750	0.9	720	-0.3	4
$!$.		$1 \cdot 15$	920	$\cdots \cdot 3$	1.930	11.7	570	-0.3	4'
111				$1 \cdot 6$	1,280	$2 \cdot 2$	1,750	117	570	-0.3	(1)
11		.		1.5	1,200	2. 2	1,750	11.7	570	-0.3	4.
12.				1.45	1,160	$2 \cdot 0$	1,590	11.6	4911	-11.3	411
1%		\cdots		1.3	1,040	$2 \cdot 1$	1,670	$0 \cdot 5$	4111	$-10 \cdot 3$	4
14		\cdot		1.2.j	1,000	1.9	1,520	11.5	410	-11.3	$41)$
1.5				1-2	960	1.5	1,200	$0 \cdot 4$	330	-1).3	411
117				$1 \cdot 0$	800	1.4	1,120	11.4	330	-11.3	41
17		11.25	29	$1 \cdot 3$	1,040	$1 \cdot 35$	1,080	11.4	330	-11.3	411
in				$1 \cdot 1$	880	$1 \cdot 3$	1, 190	11.4	330	-1.3	411
$1!1$				$1 \cdot 1$	880	1-35	1,240	11.1	330	$-0 \cdot 3$	411
210				1-2	960	$2 \cdot 1$	1.680		345	-11.8	4.1
				1.25	1,000	1.5	1,200		300	-0.3	411
22.				1.75	1,400	1.5	1,200		2 SJ	-0.3	411
2:				1.45	1,480	1.5	1,209		270	-11.3	41
24				$2 \cdot 3$	1,830	1.5	1,200		25.5		411
25				2.5	1,980	1.3	1,040		240		+"
26.				$2 \cdot 3$	1,830	1.4					41
27.				$2 \cdot 5$	1,980	1.4	1,120		210		1
28.				$2 \cdot 3$	1,830	$1 \cdot 3$	1,040		145		411
29		11.)	410	$2 \cdot 15$	1,710	$1 \cdot 3$	1.040		180		+1'
319.			380	$2 \cdot 0$	1,590	$1 \cdot 3$	1,040		10.7		411
: 1			340	$2 \cdot 75$	2.180				150		411

CRIS (CREFK NEAR AAVONA.
Location.-Section 22, township 22, range 22, west 6th meridian.
Records Asailable.-June 14, 1912 to September 14. 1912: April 2'2, 1913. to November 21, 1913.

Winter Conditions.-Very little snow during the winter with only short periods of severe weather. Conditions essentially the same as in the Deadman valley.

Gouge.-Staff gatue read daily during the irrigation seacon by W. J. Hoey.
Channel.-The stream is well confined to a single channel, whose bed is of gravel and boulders.

Discharge Measurement.-- Nine well distributed measurements have been obtained and the gauge-height-discharge curve is well defined for any flow up) (on 250 second-feet. Above this point, however, it has heen neressary to projeet results, and an endeavour to ratify them will be made during 1914.

Accuracy. - The acouracy is high exerpt during the freshet flow. when reabto cannot be vouched for.

CHISSCRFFK。
Criss creek has its souree in the hills between the headwaters of Deadman river and Tranquille river, at an elevation of about 6,000 feet. After a southwesterly course of about 25 miles it discharges into the D) adman river 10 mile above mouth, at an elevation of about 1.500 feet.

It is part of the Thompson River drainage and its drainage area, as measured from a Geological Survey map, dated 1895, is 150 square miles.

In the lower part of its source the creek flows swiftly through a narrow valley with steep sides and many sheer cliffs. In its upper reaches there is said to be considerable land suitable for homesteading. A number of homesteaders went in during the summer of 1913.

A rough pack trail leads up the creek from the mouth, and a road, which branches off from the Deadman river road about 15 miles from the mouth of Criss creek, strikes the creek again about 10 miles from its mouth.

The timber in the valley is of small size. There are several small lakes at the headwaters. The gauging station was established on June 14, 1912, by C. (i. ('line. A vertical staff gatuge is fastened to a large fir on the right bank of the stream, some 400 yads above the highway bridge. At low water, measurements are made he wading near the gatue and at high water be cable suspension from the highway bridge.

Discharge Measurements of Criss Creek near Savona, 1913.

	Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	(iatuge Height.	Discharge.
	1912.			Feet.	Sq. ft.	F't. per sec.	Feet.	Sec.-It.
June	14.	C. Cline \& Corbould.		$\underline{1}$	17.10	$\underline{2} \cdot \underline{ }$	1.119	107
Juls	16.	B. Corbould........		245	31.4	$1 \cdot 2$	11.7	34
Aus.	5	- do		24	28.6	1.1 .5	(1. $1 i^{\prime}$	33
	31	do		22	$29 \cdot 2$	1.11	(1.1)	30
1913.								
April	23.	C. Cline \& Chisholm		:	$114 \cdot 0$	1.9	1-62	$217 \cdot 11$
May	17.	K. G. Chisholm.....		30	$123 \cdot 6$	$\underline{-113}$	$1 \cdot 7$	$251 \cdot 0$
Junt	111	do .		30	99.95	1.72	1.49	1-15-6\%
Iu	1.5	do		15	26.94	$1 \cdot 15$	1). 5.3	$\because 1.1 . j$
Oet.	t	do		1:3	$13 \cdot 4$	(1) 41	11.1	$1 \because \cdot 1$

Monthiy Discharge of Criss Creek at Mouth for 1913.
(Drainage area, 150 square miles.)

Movill	Discharge in Second-Feet.				い1 Sourf.	
	Masimum.	Minimum	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on 1) ramater area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
11:1	114	i,	\$60	1.73	1.99	15, 986
June	340	76	167	$1 \cdot 11$	124	9,937
Jul)	418	41	19	1-13	1.30	11. 301
dugust....	3.3	13	32	1). 21	(1).24	1,96
september.	14	i	112	11.15	11. 119	714
October	68	111	31	0. 21	11.24	1.9n)
November.....	\because	211	24	$1) .16$	0.15	1.429

Note.-Gauge reader, W. J. Hoey

SESSIONAL PAPER No． $25 f$
Daily Cauge Heights and Discharges of Criss Creek near Mouth for 1913．

	April		H：A		$11: 51$.	
	Gauge Heinht	Dis－ chatere	Gauge Heneht	I）is－ charge	Gauge H．1～\},	$\begin{aligned} & \text { IDis- } \\ & \text { charge } \end{aligned}$
	Feet．	Sec．－ft．	Freet．	Com－-11	Feet．	Soce－ft．
1			11	\checkmark	$\because 1$	340
2.			$1 \cdot 1$	11．：	2－1	314
3.			$1 \cdot 2$	1ご	14	2 s
4.			$1 \cdot 1$	111．：	1.6	26%
$\overline{3}$			$1 \cdot 0$	85	1.7	23：
1			11.11	6	11	21.3
7.			$1 \cdot 1$	$1 \cdots$	1.5	189
8			1：	129	1.5	$1 \begin{gathered} \\ \\ \end{gathered}$
9.			$1!$	2 sin	1.1	$1+3.1$
［＂			$2 \cdot 5$	t＋	1.5	いい
11			\therefore－	391	1.5	いい
12.			$\because \cdot 2$	\therefore arit	1．	211
13.			$\therefore 1$	340	1.3	バ
17			$\because \cdot 1$	314	$1 \cdot 1$	11.5
1：1			$\therefore 1$	314	11	16.1
1.			1.7	239	$1 \cdot 3$	14；
17.			1 －	23）	11	11：
1s．			1 ，	$2{ }^{12}$	1.1	11.3
11			1	－tie	1.11	\therefore
$2(1)$			$1 \cdot \mathrm{i}$	275	111	85
21.						
22.			1．（1）	－	11.	\therefore
23.	1.7	に！	$1 \cdot 911$	2 n	11.45	96
24.	$1 \cdot 1$	11.5	119	301	11.5	if
25.	11	11.1	$\because 11$	：311	$1 \cdot 11$	83
26	$1 \cdot 1$	11.5	$2 \cdot 0$	$\because 11$	$1 \cdot 3$	14.3
27	$1 \cdot 3$	$17: \%$		327	1 ；	$14: 3$
\because	$1 \cdot 3$	14．；	$2 \cdot 9$	atri	14	165
29.	1．2	122	$2 \cdot 2$	366	11	16.5
31.	$1 \cdot 1$	1113	$\cdots \cdot 1$	340	$1 \cdot 3$	$14: 3$
31.	1.11	\cdots	$2 \cdot 2$	366		

Daily Catge Heights and Discharges of Criss Creek near Mouth for 1913.

	Das.	July.		August.		September.		October.		November.	
		Gauge Height.	Dis- charge	Gauge Height	Discharge	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$
		${ }^{\text {Feet. }}$	Sec.-ft.	Feet.	Sec.fit.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.
1		1.3	143	1.0		0.25	14	$0 \cdot 1$	10	0.4	20
$\frac{12}{3}$		1.2	122	0.9	68	0.25	14	$0 \cdot 1$	10	0.4	20
3		$1 \cdot 1$	103	0.8	${ }_{53}^{53}$	$0 \cdot 2$	13	$0 \cdot 15$	11	0.4	20
5		1.0	85 122	0.8 0.7	53 41	0.2 0.2	13 13	0.2 0.2	13 13	0.4 0.4	20
6		$1 \cdot 1$	103	0.5	26	$0 \cdot 2$	13	0.2	13	$0 \cdot 45$	23
7		1.0	85	$0 \cdot 4$	20	$0 \cdot 15$	11	$0 \cdot 3$	16	$0 \cdot 5$	26
8		0.95	76	$0 \cdot 3$	16	$0 \cdot 15$	11	$0 \cdot 3$	16	0.5	26
9		(1).9	68	$0 \cdot 2$	13	$0 \cdot 15$	11	$0 \cdot 4$	20	0.5	26
10		0.8	53	$0 \cdot 25$	15	$0 \cdot 1$	10	$0 \cdot 4$	20	0.5	26
11		0.7	41	$0 \cdot 3$	16	$0 \cdot 1$	10	0.5	26	$0 \cdot 5$	26
12		$0 \cdot 7$	41	$0 \cdot 4$	20	$0 \cdot 1$	10	$0 \cdot 6$	32	0.5	26
13		0.8	53	$0 \cdot 5$	26	$0 \cdot 05$	8	0.7	41	0.5	26
14		$0 \cdot 9$	68	0.5	26	$0 \cdot 05$	s	0.8	53	0.5	26
15		$2 \cdot 3$	391	0.5	26	$0 \cdot 1$	10	$0 \cdot 9$	68	0.5	26
16		$2 \cdot 4$	418	$0 \cdot 5$	26	$0 \cdot 1$	10	$0 \cdot 9$	68	0.5	26
17		$2 \cdot 3$	391	0.5	26	$0 \cdot 1$	10	$0 \cdot 8$	53	0.5	26
18		$2 \cdot 3$	391	0.5	26	$0 \cdot 15$	11	0.75	47	0.5	26
19		$2 \cdot 2$	366	$0 \cdot 6$	32	$0 \cdot 15$	11	0.75	47	0.5	26
20		1.9	288	0.7	41	$0 \cdot 2$	13	0.75	47	0.5	26
21		1.8	262	0.85	60	$0 \cdot 2$	13	0.75	47	0.5	26
22		1.7	238	0.8	53	$0 \cdot 2$	13	$0 \cdot 65$	36		
23.		1.6	213	0.8	53	$0 \cdot 25$	14	$0 \cdot 65$	36		
24		1.5	189	0.7	41	$0 \cdot 25$	14	$0 \cdot 65$	36		
25.		$1 \cdot 5$	189	$0 \cdot 6$	32	$0 \cdot 2$	13	$0 \cdot 6$	32		
26		1.4	165	0.5	26	$0 \cdot 2$	13	$0 \cdot 6$	32		
27.		$1 \cdot 3$	143	$0 \cdot 4$	20	$0 \cdot 2$	13	0.5	26		
${ }_{29}$		1.2	122	0.3	16	$0 \cdot 15$	11	0.5	26		
30		$\stackrel{1}{1.1}$	103	0.25 0.25	14	$0 \cdot 15$ $0 \cdot 10$	${ }_{10}^{11}$	0.4	20		
31.		1.0	85	$0 \cdot 2$	13			$0 \cdot 4$	20		

DEADMAN RIVER NEAR SAVONA.
Location of Station.-Section 22, township 22, range 22, west 6th meridian, half a mile above the mouth of Criss creek. This station was established in 1913 to replace a station below the mouth of Criss creek, upon which information was obtained during the irrigation seasons of 1911 and 1912.

Records Available.-April 22 to November 21, 1913.
Winter Conditions.-Very little snow on the lower benches, with only short periods of severe weather. Six to ten feet of snow in the upper reaches of the creek.

Gouge.-Staff gauge read daily during the irrigation season by W. J. Hoey.
Channel.-Channel is straight and control is good, while the velocity is great only during high stages.

Discharge Measurements.-Six well distributed measurements were ohtamed during 1913. Although a metering was not secured at the peak of the freshet the flow was deduced by the projection of the discharge curse. During 1914 this deduction will be ratified if possible.

Accuracy. - The accuracy is high except for the short period when flow was above 300 second-feet, which condition is mentioned above.

Deadman creek has its source in numerous small lakes between the headwaters of Tranquille creek and Bonaparte lake, some 20 miles west of the Thompson river. Most of these lakes are yet unnamed, and have an elevation of about 4.000 feet. The creek flows in a westerly direction for about 20
miles, then turns toward the south and, after a course of 30 or 35 miles farther, discharges into the Thompson river just below Kamloops lake, at an clevation of about 1,100 feet.

The chief tributaries are: from the left going upstream Clemes creck, Gorge creek, Tobacco creek, and Hunters creek. From the right, Criss creek, and Last Chance creek. The total drainage area from the Provincial Government map of the Yale district, dated 1912, scale 8 miles to 1 inch, is 500 square miles. The area above Criss creek, viz, above the measuring section, is 400 square miles. The water is used for irrigation only. The Barnes estate at Walhachin take water from Deadman creek. They have a dam on Deadman lake about 20 miles from the mouth of the creek. Their intake is about 10 miles from the mouth, and the water is carried by a 6 by 4 -foot wooden flume to Walhetchin.

There are several good power sites on the stream, which have not been dereloped. Just below the confluence of Hunters creek, 30 miles from the mouth there is a fall of 160 feet.

Deadman creek lies in the dry belt, with a precipitation near the mouth of about 10 inches. Like all streams in the dry belt, the precipitation increases toward the upper reaches with the increase in altitude. What is probably the best part of the valley is owned by Indians. They hold everything beyond the Anderson ranch to the Williams ranch, which is about 13 miles from Savona. This portion of the valley is excellent agricultural land, and beyond this for several miles it is narrow and extremely rough, then widens out again and there are stretches of good land, and several fine ranches have been developed.

A station was established just above the intake of the Walhachin flume (12 miles from Savona) on July 11, 1911. Readings were taken on the gauge at this point during the remainder of the irrigation season (1911) and the whole irrigation season (1912). It was replaced, however, in 1913 by a station installed above the confluence of Criss creek, which has been found to give better results, Criss creek itself also having been rated.

During 1911 readings were taken on a gauge 3 miles from the creek's mouth, with a view to finding the amount of water and to studying the question of - erpage.

Discharge Measurements of Deadman River above Criss Creek, 1913.

	Date.	Hedresraphur	Meter No.	Width.	Area of Section.	$\begin{aligned} & \text { Mean } \\ & \text { Velocity. } \end{aligned}$	Gauge Height.	Discharge.
	191\%			Feet.	Sq.-ft.	F't. per sec.	Feet.	Sec.-ft.
April	2.;	Cline \& Chisholm	1,055	: 1	11.7	$\therefore 1$	3. (i)	1291
April	22	'K. (. Chisholm \& C. G. Cline	1, 11.	40	-1.	$\therefore \therefore$	$\therefore \%$	"2.0\%
11:1\%	17	K. G. Chisholm..............	1,115.	34	11.51	11.5	$\therefore 4.5$	410
June	11.	do	1,0.5	24.5	:3! !	$\therefore 111$	2-35	- 9
. 1 \% 2	17	(1)	1,0.5)	1.50	$19 \cdot 4$	$2 \cdot 53$	1 HI	44
Uet.	f;	do	110%	11.7	! 1 - ${ }^{\text {a }}$	1.11	$11!1$	'111.

[^13]
Monthly Discharge of Deadman River above Criss Creek, for 1913.

(Drainage area, 400 square miles).

		Discharge in Second-Feet.				Run-Off.	
	Month.	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage	Total in acre-feet.
May		481	145	261	(1).8.3)	0.75	16,048
June		156	42	90	$0 \cdot 22$	$0 \cdot 24$	5,355
July .		133	42	92	$0 \cdot 23$	0.26	5,657
August....		57	11	31	$0 \cdot 08$	$0 \cdot 09$	1.906
September		11	10	10	0. 02	$0 \cdot 02$	59.5
October...		12	10	11	$0 \cdot 03$	$0 \cdot 03$	676
November		14	11	12	0) (0,3	(0) 113	714
The period		481	10	73	$0 \cdot 18$	1.42	30,951

Daily Gavge Heights and Discharges of Deadman River above Criss ('reek for 1913.

	1):1\%.	April.		May.		June.	
		Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$
		Feet.	Nec-ft.	Feet.	Sec.-ft.	Feet.	see -ft.
1				$3 \cdot 2$	199	2.9	156
2				$3 \cdot 1$	18.3	$2 \cdot 8$	14.5
3.				$3 \cdot 1$	183	2.7	133
4				$3 \cdot 11$	149	$2 \cdot 7$	133
5.				$2 \cdot 4$	156	$2 \cdot 6$	129
6.				$2 \cdot 9$	1.96	$2 \cdot 5$	112
7.				2.8	145	$2 \cdot 5$	112
8.				$\because \cdot 8$	145	$2 \cdot 5$	112
9.				$\because \cdot 9$	156	$2 \cdot 4$	1112
10				$3 \cdot 1$	183	$2 \cdot 4$	1112
11				$3 \cdot 3$	216	$\because 3$	9
12				$3 \cdot 8$	340	$2 \cdot 3$	92
13.				$4 \cdot 11$	434	$2 \cdot 2$	\because
14				$4 \cdot 1$	481	$2 \cdot 2$	$\therefore 2$
15				$4 \cdot 1$	481	$2 \cdot 1$	7.3
16				$4 \cdot 11$	434	$2 \cdot 1$	73
17.				$3 \cdot 6.7$	410.	$2 \cdot 0$	(i.)
18.				3.4 .5	362	2	(i.)
$1!1$				$3 \cdot 8$	341	$2 \cdot 0$	(i.)
20.				3.7	306	$2 \cdot 11$	(i.)
				3.7	206		37
29				$3 \cdot 6$	278	1.9	\therefore
23		$3 \cdot 5$	2.54	$3 \cdot 10$	278	$1 \cdot 1$	$4!$
:		:3.6	- ?	$3 \cdot 1 ;$	278	1.7	12
25.		3.5	254	: 1	234	$1 \cdot 1$	\therefore
26.					234		73
27		$3 \cdot 4$	234	$3 \cdot 4$	234	$2 \cdot 1$	1.15
28.		3.3	216	:3.3	216	$2 \cdot 4$	11:
29.		$3 \cdot 3$	216	$3 \cdot 3$	199	$3 \cdot 4$	110
30.		$3 \cdot 2$	199	$3 \cdot 1$	18.3	$2 \cdot 4$	10
31.				$3 \cdot 11$	16.9		

SESSIONAL PAPER No. 25f

Daily Gauge Heights and Discharges of Deadman River above Criss Creek for 1913-Continued.

DEADMAN RIVER (WALHACHIN FLUME).

Location. -Section 26, township 21, range 22, west 6 th meridian.
Records Available.-July 15 to August 31, 1912; April 21 to August 16, 1913.

Gauge.-Gauge is a standard vertical staff gauge, and is read daily by R. McDonald, during the irrigation season.

Flume.-Six-foot timber flume, 4 feet deep, seams caulked with oakum, and the whole interior coated with tar. The flow is even.

Discharge Measurements.-The flume is fairly well rated by four meter measurements practically covering its range.

Accuracy.-Accuracy of results submitted is fairly high, and will be well defined during 1914.

- WALHACHIN FLUME.
(Extract from report by P. A. Carson dated August 21, 1911.)
The source of water supply for Barnes estates is Deadman river, a stream 35 feet wide, from 2 to 4 feet deep. It rises in the hills (elevation 6,000 feet) some 40 to 50 miles north of the Thompson river, and flows in a general southerly direction.

The minimum discharge of Deadman river is about 16 second-feet at the end of August, and the maximum about 450 second-feet at the middle of May.

Just outside the northerly limit of the Railway Belt the river widens into a lake, called snohoosh lake, or Deadman lake. This lake is a narrow winding body of water about 3 miles long, with a superficial area of 350 acres. It affords a dood reservoir site, and to store the surplus waters of the spring freshet for the dry summer season, the company have constructed a dam at the outlet of the lake.

The dam is timber cribbed and rock-filled, the timber being lock-bolted together; it is founded on rock bed, and the base is concrete lined, with two 24 -inch steel pipes laid in concrete. The dam is 140 feet long and $20 \cdot 5$ feet high, with a width at the base of 56 feet. The millway is 90 feet wide, having a 3 -foot parapet. By means of this dam 7,000 acre-feet of water can be stored. The natural flow of the river is ample for irrigation until July 15 , when the stored waters are called upon until close of irrigation season, about dugust 15. The enomity of the spring flood may be comprehended when I say that after the freshet commenced the reservoir was filled in four days.

A conservative estimate of the duty of water in this locality is 100 acres per second-foot, and with the storage in snohoosh lake there is sufficient water to irrigate 7.000 acres of land. The Barnes estates are already supplying water to the sianona ()rehard (ompany on D) adman Indian reserve, and are syphoning is :econd-feet aross the Thompson river to the British Columbia Horticultural estates. Ther will probably also supply water to some ranches along Eight mile areek, adjoining their property on the west, and have eomstructed their camal with that ohject in view. Besides the Barnes estates there are several smaller users ohtaming their water from Deadman river, and there is plenty for all.

Flumes and Ditches.

The main chanmel is about 10 miles long from the intake to the easterly boundary of the estate. In this portion there are -12 miles of flume and 2.2 miles of ditch.

The main flume is a 6 -foot timber flume, 4 feet deep, and will carry 3 feet of water: it is made of $1^{3} 4_{4}$-inch hoards. well seatoned, the sides and hottom
are shiplapped，and the seams caulked with oakum，and the whole interior coated with tar，making a very permanent and watertight construction．The studdings（ 4 by 4 ）are alternately capped with cross－pieces to prevent spreading． such a flume is perhaps not as permanent as a concrete or a steel flume，but is much cheaper，and will last for many ears．The maximum grade is is feet to the mile，and the velocity is 3.8 feet per second．

The main ditch is slightly larger than the flume，but has the same capacity．The gravelly subsoil through which most of the ditch passes is rather porous，and last year a great deal of trouble was experienced with seepage． something like 40 per cent of the water being lost in transmission．By puddling the water with silt and a little concrete this diffeulty has been almost entirely overcome．

However，I believe the greater portion of the ditch will have to be lined with concrete ultimately．

A right of way or easement for the main canal across the Indian reserve has been obtained，and is well fenced．

From the east half of section 10，township 21，range 2．2．to the east houndary of seetion 13，township 21，range 23，the main flume is ： 4 －foot construction similar to the 6 －foot flume．It has a maximum capacity of 30 serond－feet：the slope is 8 feet to the mile．Note the trestle work in photograph No． 8.

In the canal there are 15,600 feet of flume and 7,000 feet of ditch．
From the east boundary of section 13 to the west limit of the estate， the canal is 3 feet wide．It has a capacity of 18 second－feet，which is larger than is needed by this company，but it is proposed to supply water to some ranches adjoining the west．This flume is not tarred or capped as yet．

In the 3 －foot canal there are 10,500 feet of flume and 5,550 feet of ditch．
Of the laterals for distributing the water of the different parts of the estate， there are 46,300 feet of small fluming，and 30,500 feet of small ditching．All the laterals leave the main canal from the flume，not ditch，and in consequence there is little danger of washout．

The distribution system is rather elaborate，and is not described here．

Monthly Discharge of Wathachin Flume near Head Ciates for 1913.

	\い\1H	I）ISCharge in second－Heet．			Rじふ－（）yF。
		－			
		Maximum．	Minimum．	Mean．	```Total in acre-feet.```
Apral		1t．1	11	$2 \cdot 97$	1\％
Hisy		24.1	$11 i \cdot 1$	$2 \cdot 1$	1．3．59
Jisin		$\because 11.1$	$\because 11$	$\stackrel{7}{-9}$	1.615
July．		S1） 14	114．7	$\because \because .1$	1，rivis
Aリブサ1		： 111.1	11	1．3．7	－ 4

Total amount of water diverted in $1913=5,662$ acre－feet．

Drocharif：Meastrempats of Walhachin flume near Head Gates， 1913.

i）ate	Hydrographer．	$\begin{gathered} \mathrm{M}+4 . \mathrm{r} \\ \text { No. } \end{gathered}$	Width．	Area of section．	Mean Velorit：	（i：aug． Height．	Discharge．
			Feet．	Sq．it．	Ft．per sec．	Feet．	sec．－ft．
10ral 21	K．G．Chisholm	1，05．	6.0	3.25	$1 \cdot j$	0.55	$5 \cdot 3$

265－14

Daty (iatue Heights and Dincharges of Wathachin Flume near Head Cates on Deadman River for 1913.

	以is.	April.		May.		June.		July.		August.	
		(iange Height	Discharge	(iauge Height	I)in charge	Gauge Height	Dischatee	Gauge Height	Discharge	Gauge Height	Dis(harge,
		Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sce.ft.	Feet.	Sec.-ft.
1				$1 \cdot 1$	16.6	1.35	24.1	1.35		1.55	
3				1.1	16.6 19.4	1.35 1.35 1.35	24.1	1.3 1.3	22.5	$1 \cdot \overline{1}$	$29 \cdot 1$
3				1.2	19.4	1.35	$24 \cdot 1$	$1 \cdot 3$	22.5	1.45	27.4
5.				1.2	19.4	1.35	24.1	1.35	24.1	1.4	$25 \cdot 7$
6.				$1 \cdot 3$	22.5	1.4	25.7	1.35	$2 \cdot+1$	$1 \cdot 3$	$22 \cdot 5$
7				$1 \cdot 3$	22.5	$1 \cdot 4$	25.7	$1 \cdot 35$	$24 \cdot 1$	1.3	39.1
8				1.3	22.5	1.45	27.4	1.4	25	1.5	29.1
9.				1.3	22.5	1.45	27.1	1.4	25.7	1.5	3! 1
10.				1.3	22.5	1.45	27.4	1.1	25.7	1.5	29.1
11				$1 \cdot 3$	22.5	1.5	29.1	$1 \cdot 45$	2.4	1.4	$\cdots \cdot 1$
12...				$1 \cdot 3$	22.5	1.5	29.1	$1 \cdot 45$	27.4	1.4	$29 \cdot 1$
13.				1.3	22.5	1.5	$29 \cdot 1$	$1 \cdot 2$	119.4	1.4	29.1
14..				$1 \cdot 3$	22.5	1.5	29.1	1.3	22.5	1.4	$\underline{29.1}$
15...				1.3	22.5	-1.5	29.1	1.4	25.7	$1 \cdot 4$	
16...				1.3	22.5	1.45	27.4	1.4	25.7	i	!
$17 \ldots$				$1 \cdot 3$	22.5	1. ${ }^{\text {a }}$	29.1	1.5	29.1		
$18 \ldots$ $19 .$.				1.3 1.3	22.5	1.5	29.1 29.1	1.5 1.05	29.1 $30 \cdot 9$		
20.				1.3	22.5	1.4.5	27.4	1-3	$30 \cdot 9$		
21...		(1). 3.	(6.11	1%	22.5	1.4 .5	27.4	1.55	30.9		
22.		11.6	$6 \cdot 8$	1.3	22.5	1.45	27.4	1.3.5	$30 \cdot 9$		
23.		$0 \cdot 6$	$6 \cdot 4$	1.3	22.5	1.45	27.4	1. $\%$	30.9		
24.		$0 \cdot 6$	fin	$1 \cdot 3$	22.5	$1 \cdot 45$	27.4	1.9.5	$30 \cdot 9$		
25...		11.11	(1).1)	$1 \cdot 3$	22.5	1.45	27.4	1.9	$29 \cdot 1$		
26...		11.7	8.3	1.35	$24 \cdot 1$	1.5	29.1	1.5	$29 \cdot 1$		
$27 \ldots$		0.9	$12 \cdot 0$	1.3.5	24.1	1.5	29.1	1.5	-9.1		
28...		$1 \cdot 11$	$14 \cdot 1$	$1 \cdot 35$	$24 \cdot 1$	1.5	29.1	1.5	29.1		
29 ...		$1 \cdot 11$	$1+1$	1.3.5	$24 \cdot 1$	1.4	25.7	1.5	$30 \cdot 9$		
30 31		$1 \cdot()$	$14 \cdot 1$	$1 \cdot 35$	$24 \cdot 1$	$1 \cdot 4$	25.7	1.5.5	$310 \cdot 9$		
31...				1-35	$2+1$			1.9	24.1		

${ }^{1}$ End of irrigation season

EAGLE RINER AT MALAKWA.

Location.-In township 23, range 6, west 6th meridian, 15 miles from the mouth, at the traffic bridge near Malakwa, B. C.

Winter Conditions.-Heavy fall of snow, fairly severe weather ($-20^{\circ} \mathrm{F}$-). The river is generally partially frozen between November 15 and March 15 -

Records Available.-May to December, 1913.
Gauge.-Chain gauge is used, and is read daily by Mr. Earl Swan, of Malakwa, B. C.

Channel.-The channel is uniform and straight for 100 yards above and below the gauge. The control has not yet been studied as to permanency.

Discharge Measurements.-Measurements are made from the upstream side of the traffic bridge six well distributed meseurements heing made during 1913.

Accuracy.-Accurate gauge readings, careful meter measurements, and the appearance of the gatue-height-discharge curve tend to show that the 1913 data on this stream are very accurate; results, except in May and June, should be within 5 per cent.

General.-This station on Eagle river at Malakwa was established on May 14, 1913, to replace the station established in 1911, near Sicamous, where it was foum there wat a batwater effeet from shaswal lake during high water.

SESSIONAL PAPER No．25f
Discharge Measurements of Eagle．River near Malakwa， 1913.

	Date．		$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width．	Area of 	$\begin{aligned} & \text { Me:an } \\ & \text { Valobl! } \end{aligned}$	Gauge Howh．	1）いい．．．．．．．
	1913.			Feet．	sıg．ft．	Ft．per sec．	Feet．	See．ft．
V：1：	1 1	C．E．R．dJ．A．E	1．＂1	125	1574	4．（1）	$1 \cdot 80$	2.6900
＊	31	J．A．Elliott	1，672	13：	1，100）	（i） ti	1i． 91	－，110
June	7	110	1，672	13.	1，090	6.20	f． 70	10．750
July	10	do	1，672	1こ	－	4.14	j） 12	$\therefore 11,11$
Aur．	27	do	1，67：	128	$\therefore 1$	$\therefore 14$	$\therefore 7.1$	1．44（）
Nov．	7	H．M．D．© K．（x．C		12．）	46	1．3：	$\because \cdot 61$	$10^{2}(0)$

Monthly Discharge of Eagle River near Malakwa for 1913．
（ D rainage area， 420 square miles．）

－	Mosth．	DISCharge IN SECOND－FEET．				lit	$11:$
		Maximum．	Minimum．	V1r：nn	$\begin{aligned} & \text { L'.. } \\ & \text { - !1,.11. } \\ & \text { mile } \end{aligned}$	Depth in inches $1 \quad 11$ I）rainage ared．	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
Mas		8.150		2， 2680	C，Sil	－-1	$\therefore 7.14 .16$
June			3，370	1i． 14	15 i	$1 \% 11$	3×3.1010
July．		3.950	1，670	\therefore－11	W ゞ1	$7 \cdot .5$	176，000
August．		$\therefore 1.11$	1，110	1．730	111	$\pm \cdots$	107， 0100
September		：3，540	0.110	1．203	$\therefore 92$	$3 \cdot 2 \cdot i$	73.000
October．		1．670	480	－14	1－11	$\underline{2} \cdot \underline{11}$	49.4010
November．		7.30	新	S14	$1 \stackrel{1}{-1}$	1．34	30.960
Duchrther		151	$\because 1.5$	318	（1） 76	1－	19，6\％

[^14]5 GEORGE V., A. 1915
Daily Gafge Heights and Discharges of Eagle River near Malakwa for 1913.

	Day.	May.		June.	
		Gauge Height	Discharge	Gauge Height	Discharge.
		Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.					8.400
2.				$7 \cdot 5$	9,680
3.				$7 \cdot 6$	10, 116
4.				$7 \cdot 2$	8,510
5.				$6 \cdot 8$	7,120
9				$6 \cdot 15$	-5, 140
7				$6 \cdot 7$	6,790
8.				$7 \cdot 45$	9,480
9				7.7	10,50)
10.				$8 \cdot 05$	12,150
11				7.45	
12				$7 \cdot 2$	$8, .510$
13				$7 \cdot 25$	\therefore, (i)k
14			2,650	6.95	7,630
15		$4 \cdot 4$	2,150	$6 \cdot 3$	5,540
16		$4 \cdot 3$		$5 \cdot 7$	4,110
17		$4 \cdot 1$	2,150	$5 \cdot 45$	3,630
18		4.4	2,150	$5 \cdot 3$	3,370
19		$4 \cdot 4$	2,150	$6 \cdot 1$	5.010
20		$4 \cdot 6$	2,390	$6 \cdot 9$	7,460
21		$4 \cdot 8$	2,650	$6 \cdot 3$	5,540
20		$5 \cdot 2$	3,210	$6 \cdot 2$	5,270
23		$5 \cdot 6$	3,910	$5 \cdot 95$	t,650
24		$5 \cdot 9$	4,540	$5 \cdot 45$	3,630
2.5		$6 \cdot 2$	5,270	$5 \cdot 45$	3,630
26		$6 \cdot 2$	5,270	$5 \cdot 5$	3,720
\cdots		$6 \cdot 3$	5,540	$5 \cdot 7$	4,110
23.		$6 \cdot 6$	6,460	$5 \cdot 55$	3,820
$\because 9$		$7 \cdot 1$	8,150	$5 \cdot 5$	3,720
30		$6 \cdot 6$	6, 460	$5 \cdot 6.5$	4,010
$\therefore 1$		6.3	7,120		

SESSIONAL PAPER No. 25f
Daili (iadge Heights and Discharges of Eagle River near Malakwa for 1913.

ESSELI CREEK NEAR ADELPHI.
Location.-Section 35, township 17, range 14, west 6th meridian, below summit Lake tributary to Salmon river.

Records Available. May 25 to September 30, 1911; April 1 to september 7, 1912; April 16 to September 14, 1913.

Winter Conditions.-Winter conditions are not as a rule severe. The stream is usually dry during the winter months. I storage dam on summit lake controls its regimen.

Gauge.-A standard vertical staff gauge, read tri-weekly by T. F. Teagle.
Channel.-The channel is gravelly, and there is no possibility of overflow at the gauge. The control is good.

Discharge Measurements.-Well distributed meterings have been made covering the stream's range.

Accuracy.-The accuracy of results appended is fairly high, within 10 per cent.

Escell areek, lorally known as summit Lake reek, hats its souree in summit lake near the divide between Monte areak and Grand Prairie, at an elewation of 2,050 feet, and discharges into the Salmon river near (irand Prairie. at an elevation of 1,800 feet. Its dramage area is a litfle over 6 square miles and its natural run-off is very small. A diversion has, however, been made from Monte
creek to Summit lake by a ditch about a mile long，and it is this Monte creek water which provides the greater part of the flow of Essell creek．This water is used around Grand Prairie，where there are over 5，000 acres of land under cultivation．The precipitation in the Essell creek drainage area is from 12 inches to 15 inches，and the evaporation losses from Summit lake are great．

The station was established on May 25，1911，by C．E．Richardson，and daily gauge readings have been taken during the irrigation seasons of 1911， 1912，and 1913.

The measuring section is 100 yards from highway from Grand Prairie to Ducks， 2 miles from Grand Prairie and 50 yards above the gauge．

The gauge is a vertical staff gauge 5 feet long．Measurements are made with wading equipment from two planks thrown across the stream．

The banks are gently sloping，with no chance of overflow．The bed of the stream is of sand and gravel．Three bench－marks have been placed at the station and their elevations referred to the datum of the gauge．

Discharge Measurements of Essell Creek，near Grand Prairie， 1913.

	Date．	Hydrographer．	$\begin{aligned} & \text { M1..サ日 } \\ & \text { No. } \end{aligned}$	Width．	Area of section．	Ilean Velocity	Gauge Height	Discharge
	111！			Feet	sic．it．	Ft．per sec．	Feet	Seco－it
Nay	25	IV．M．Carlyle	14.4	10	$11 \cdot 3$	1.74	1.30	19.7
	25	C．F．Richardson．	1048	11	14．${ }^{\text {j }}$	1.71	1.21	16．2
．	25.	C．G．Cline．	1046	12	12.7	1.28	$1 \cdot 20$	16.2
June	，	C．E．Richardson．	10.48	11	$13 \cdot 6$	1.79	1． 12	24.5
Aug．	\cdots	W．M．Carlyle．	1114	9	3．fi	0.73	10.83	\cdots
	24.	do	1044	9	$3 \cdot 3$	0.74	（1， 21	$\because \cdot$
113	1912	C．E．Richardson	1115	11	$15 \cdot 4$	$2 \cdot 12$	1.80	$32 \cdot 7$
141：	15.	do	1048	$10 \cdot 5$	$6 \cdot 1$	$1 \cdot 61$	$1 \cdot 22$	9．4
	17.	do	10.48	10	－i 1	1.57	1．18	\cdots
Aug．	27.	do	1049	$?$	$2 \cdot 8$	0.93	$0 \cdot 95$	\cdots
Apr．	24.	H．J．E．Keys．	11.58	5	1.8	1．50）	1.111	\cdots
．lun．	19	do	10.57	10	$13 \cdot 3$	$1 \cdot 5$	1－5．3	$18 \cdot 9$
Jn！	11	do	10.5	10	$9 \cdot 2$	$1 \cdot 2$	1－3：2	11：－

Monthly Discharge of Essell Creek．near Grand Prairic for 1913.
［Drainage area， 6 square miles．］

		Dischirrge in Second－Feet．				R「以い！	
	．1．	11：1smum	Ninimum．	Mean．	Per square r．ile	Depth in inches on Drainage area．	Total in acrelecet．
11.1		20	7	$10 \cdot 4$	1.73	1.9	い，！
． 1 um		$22 \cdot 8$	19	$20 \cdot 6$	？ 3 （ $6: 3$	$1 \cdot 0.5$	1，205
Julv		22	3．1	$10 \cdot 2$	1.70	1．96i	127
． $1: \cdots$		s． 6	i	6.7	1．12	$1 \because$	110

Sote．－Artificial control．

SESSIONAL PAPER No. $25 f$
 for 1913.

FIRASER RIVER AT LYTVON.
 about a mile above town of Iytton, and above the confluence of the Fraser and Thompson rivers,

Records Available--February 20 to December 31, 1912; January 1 to December 31, 1913.

Winter Conditions.- Open flow throughout the year.
Gauge.-Gauge painted on rock and graduated to feet. Readings made by J. C. Lual.

Channel-The chamel varies in width from 200 feet at low water to 800 feet at high water. The flow is uniform, but velocities are very great during the high stages of the water.
 ranging from 11,500 second-feet to 162,000 second-feet. The curve has been projected beyond these points.

Accuracy.-Conditions for gauge reading are good. Deterings are made from the ferry boat, which swings somewhat from side to side in the current, and probably affects the accuracy of the high-water measurements to at slight extent. The results, however, are considered to be within 10 per cent of the truth throughout.

Discharge MIeasurements of Fraser River at Lytton, 1913.

Date	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity".	Gauge Height.	Discharge.
			Feet.	Sq.ft.	Ft. per sec.	Feet.	Sec.-ft.
September 5..	Cline and Chisholm	105.5	540	7.860	9.53	21.0	74,9)

Monthly Discharge of Fraser River at Lytton for 1913.
[Drainage area, 63,000 square miles.]

Month.		Discharge in Second-Feet.				Rux-Off.	
		Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage Area.	Total in acre-feet.
January		16,500	1,500	7,556	$0 \cdot 12$	$0 \cdot 14$	464,500
February		13,000	5,750	9,150	$0 \cdot 14$	$0 \cdot 15$	508, 100
March...		13,875	7,000	10,200	$0 \cdot 16$	(1) 18	627,200
April....		56,000	9,500	26,452	$0 \cdot 42$	$0 \cdot 47$	1,573,900
May...		142,500	28,500	79,746	1.27	1.47	4,903,600
June..		182,000	136,250	160,754	$2 \cdot 55$	$2 \cdot 84$	9,565,000
July....		142,500	99,250	123,315	1.96	$2 \cdot 26$	7,583,0111
August....		114,875	62,500	86,052	1.37	1.58	5,290,000
September		-99,250	53,000	71,083	$1 \cdot 13$	1.26	4,230,000
October		71,500	44,000	55,500	0.88	1.01	$3.413,000$
November		47,000	20,500	30,858	$0 \cdot 49$	(1. 5.5	1,835,(\%H)
December		28,500	13,000	20,540	$0 \cdot 33$	6 0.38	1,263,000
The year..		182,000	1,500	56,767	$0 \cdot 90$	12.29	41.256.314)

SESSIONAL PAPER No. 25 f
Daily Gauge Heights axd Discharges of Fraser River above mouth of Thompson River for 1912.

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Fraser River above mouth of Thompson River for 1912.

		July.		August.		September.		October.		November.		December.	
	11.	(iatuge Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height	Discharge.
		Fect.	Sec. -ft .	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec. ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1		31.0	133,500	21.0	68,500	$19 \cdot 0$	56, 800	14.5	32,800		25,500	$10 \cdot 0$	12,800
\because		28.0	113, 200	21.5	65,500	$18 \cdot 0$	51,200	14.5	32,800		25,500	10,0	12,800
3		27.0	106,600	20.11	62,500	18.1	51,200	14.0	30,300	13.11	25,500	$10 \cdot 0$	12, 3101
1		26.0	100, 100	$22 \cdot 5$	77.600	17.5	48,400	14.0	30,300	$13 \cdot 1$	25,500	$10 \cdot 0$	12,800
.		$25 \cdot 0$	93,500	22.5	77,600	$18 \cdot 0$	51,200	14.5	32.800	$13 \cdot 0$	25.500	$10 \cdot 0$	12,800
6		25.0	93,500	$23 \cdot 0$	80,700	$18 \cdot 0$	51,200	18.0	51,200	$13 \cdot 0$	25,500	$10 \cdot 0$	12,800
7		-5.0	93, 310	$23 \cdot 0$	80, 700	$17 \cdot 0$	45.600	$17 \cdot 0$	45,600	$13 \cdot 0$	25,500	11.0	12.800
-		25.0	93,500	$23 \cdot 0$	80,700	$17 \cdot 5$	48,400	$16 \cdot 5$	43,600	13.5	27,900	$11 \cdot 11$	16, 21010
$!$		29.0	93;500	$23 \cdot 5$	82,850	18.1	51,200	16.9	40,400	$13 \cdot 5$	27,900	$12 \cdot 0$	21,000
10		2.) (0)	93,500	23.5	82,850	$17 \cdot 0$	45,600	$16 \cdot 0$	40,400	$13 \cdot 0$	25,500	$12 \cdot 0$	21,000
11		$25 \cdot 0$	93,500	$23 \cdot 0$	80,790	$17 \cdot 0$	45.600	16.5	43,000	$12 \cdot 5$	23,250	$12 \cdot 5$	18,900
12		24.0	87,000	23.0	: 81.80	$17 \cdot 0$	45,600	$17 \cdot 0$	45,600	$12 \cdot 1$	21,000	$12 \cdot 0$	¢1,000
1:3		$\cdots 4.0$	87,000	$23 \cdot 0$	$80.7(0)$	$17 \cdot 1)$	45,600	$16 \cdot 5$	43,000	$12 \cdot 0$	21.000	12.0	21,000
14		24.0	87,000	24.0	87.000	17.0	45,600	$16 \cdot 0$	40.400	11.5	18,900	$12 \cdot 11$	21,000
1.5		$25 \cdot 0$	93, 500	$23 \cdot 5$	83,850	17.5	48,400	16.11	40.400	$11 \cdot 0$	16.ant	$11 \cdot 0$	16,800
111		26.0	100,000	$23 \cdot 0$	80,700	17.0	45, 600	16.0	40,400	11.11	16,800	11.0	16,800
17		2.50	93, 51010	$22 \cdot 5$	77,600	$17 \cdot 0$	4.). 6101	16.11	41). 400	11.5	18, 900)	$10 \cdot 0$	12,800
is			87,000	$22 \cdot 0$	74,500	$17 \cdot 0$	45,600	16.0	41, 4010	11.5	18,900	$10 \cdot 0$	12, 419
19		$23 \cdot 0$	80, 700	$21 \cdot 6$	68,500	$17 \cdot 0$	45,600	1.5.5	37,850	12.0	21,000	$10 \cdot(1)$	12, $3(10)$
21		$\because 2$	77,600	$23 \cdot 0$	80,700	$17 \cdot 0$	45,600	$15 \cdot 0$	35,300	$12 \cdot 0$	21,000	$11 \cdot 1$	16,800
≥ 1			76,000	$23 \cdot 0$	80,700	$16 \cdot 0$	40,400	$15 \cdot 0$	35,300	$12 \cdot 0$	21,000	$10 \cdot 0$	12,800
2.		$22 \cdot 0$	74,500	$23 \cdot 0$	80,700	$16 \cdot 11$	40, 4101	15.0	35.300	$12 \cdot 5$	23,250	$10 \cdot 0$	12,800
23		$23 \cdot 0$	80,700	$23 \cdot 0$	80.700	$17 \cdot 0$	45.610)	$15 \cdot 0$	35,300	12.5	23,250	11.0	16,800
$\because 2$		23.0	80, 800	$23 \cdot 0$	S0. 700	16.0	40, 400	$15 \cdot 0$	35, 300	$12 \cdot 0$	21.1006	1i).11	12.9111
2.)		$23 \cdot 5$	83,850	$24 \cdot 0$	87,000	$15 \cdot 5$	37,850	$15 \cdot 0$	35,300	$12 \cdot 0$	21,000	$10 \cdot 0$	12,800
210		$23 \cdot 5$	83,850	24.0	87,000	$15 \cdot(1)$	35,300	$15 \cdot 0$	35, 300	11.5	18,900	$10 \cdot 0$	12,800
-1		23.11	80, 700	24.0	87,000	1.5.11	35,300	14.5	32,800	11.0	16,800	$10 \cdot 11$	12,800
-		$23 \cdot 0$	80, 700	24.11	80, 700	15.11	35, 300	14.0	30, 300	11.0	16,800	$10 \cdot 0$	12,800
93		2-2.0	64,500	$23 \cdot 0$	80,700	$15 \cdot 0$	35,300	$14 \cdot 0$	30, 300	10.5	14,800		12, 80
\%		21.5	71.500	21.0	58,500	14.5	32,800	$13 \cdot 3$	27.900		13,800		12.4th
81		21.0 .	68,500	$20 \cdot 0$	62.500			$13 \cdot 0$	25,500				12,8010

Location. -Section 33, township 17, range 20, west 6th meridian.
Records Available.-May 1 to August 1, 1912; April 27 to August 24, 1913.
Winter Conditions.-Stream is generally dry during the months of October, November, December, January, February and March.

Gauge.-A vertical staff gauge, read semi-weekly by R. L. Burgess.
Channel.-The chamel is about 10 feet in width. The maximum recorded flow was 95 second-feet, which occured on May 9, 1912.

Discharge Measurements.-The curve is only fairly well defined, although ten meterings have been made. A shifting chamel is the probable cause of inarmurary.

Accuracy.-The accuracy is not very high, but results are considered to be within 15 per cent of the truth.

Greenstone creek has its source in Big Fish lake township 18, range 20 . west 6 th meridian, at an elevation of 4,820 feet, and discharges into Neadow creck 8 miles from the mouth, at an elevation of 4,000 feet. It is part of Cuichon-Nicola-Thompson drainage; the drainage area, as measured from the Creological Survey map, dated 1895, scale 2 miles to 1 inch, is 20 square miles. This is a contentious irrigation stream, in the dry belt; the summers are hot and dry, the winters long and very cold (-30 F .) ; the mean amual precipitation is about 15 inches.

Greenstone creek is about 6 miles long, and drains Face and Big Fish lakes. There is no agricultural land except the Watson meadows at the mouth; there is a record of 1,000 inches appurtenant to this land. In addition the British Columbia Fruitlands Company, and the Beaton estate have records of 500 inches each to divert water from Face lake and Big Fish lake, respectively, into the Thompson drainage; while the mean run-off of the creek during the irrigation season of 1912 (an exceptionally wet season) was less than 10 secondfeet, or 350 inches. The British Columbia Fruitlands Company propose to turn water from Face lake into the headwaters of Cherry creck, and thence via Cherry creck to their estates. The Beaton estate propose to build an earthen ditch 22 miles long in a northwesterly direction to their ranch in the Cherry creck valley; the ditch would receive water from Duffy, Chartrand, and Three-mile creeks, en route, provided the application for water for these estates were granted. The combined area of Big Fish and Face lakes is approximately 500 acres, and the lakes could be dammed 10 a height of 15 feet. Both of these schemes are meeting with stremuous opposition from the interests on Guichon creek.

The river station was established September 14, 1911, by W. M. Carlyle. The measuring section is located about half mile from the mouth. A standard vertical staff gauge is located on the left bank at the measuring section. All the measurements are made by wading, though in high water, measurements have to be made at the Chartrand-Trout lake road where the water rums in two chamels. The measuring section is only fair, as part of the creck apparently sinks, reappearing below the measuring section. The control, however, is good, the current uniform, the channel permament, and the banks not liable to overflow unless the chamel were blocked by logs, which are abundant.

Discharge Measurements of Greenstone Creek, near Mouth, 1913.

Note-Gauge Reader-R. L. Burgess.
${ }^{\text {and }}$ Estimated.

Montliy Discharge of Greenstone Creek near Mouth for 1913.
(Drainage area, 20 square miles.)

		Discharge in Second-Feet.					
	Montr.	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	Total in acre-feet.
May		26	$3 \cdot 8$	15.4	$0 \cdot 75$	0.89	147
June		$20 \cdot 5$	$3 \cdot 8$	$9 \cdot 3$	(1).46	0.51	19\%
July:.		$17 \cdot 6$	$3 \cdot 5$	5.0	10.4	0.46	4!!
August				$3 \cdot 0$	$0 \cdot 15$	$0 \cdot 17$	104

Note. -This station gives the flow from Big Fish lake to Face lake.

SESSIONAL PAPER No． $25 f$
Daily Gauge Heights and Discharges of Greenstone Creek near Mouth for 1913.

		Ipral．		May．		June．		I 15.		リッゴ・•	
	11.	Gauge Height	Dis－ charge．	Gauge Height．	Dis－ charge．	Gauge Height．	Dis－ charge	Gauge Height	Dis－ charge	Gauge Height．	Dis－ charge．
		Feet．	Sec．－ft．								
1.					10.7		111.9		$17 \cdot$		$\because 4$
\therefore					$10 \cdot \underline{2}$		$9 \cdot 3$		11.7		$\because \frac{1}{1}$
\because					11．7		$\therefore 7$	11.4	1．17		$\therefore 11$
\pm				0.75	11－2	11．－	\bigcirc		11．！ 14		？＂
				11.	3.5		7.3	$0 \cdot 85$	1.1		\therefore
7.				17	$7 \cdot 5$		$7 \cdot 3$		$11 \cdot 1$	11．9	－ 4
3.				11.	11.2	10.7	$7 \cdot 3$		$9 \cdot 3$		$2 \cdot 4$
3.					$16 \cdot 1$		（i）．！	11.7	7%	11.8	$2 \cdot 4$
10.					21.0		（1．）		（i．i		$2 \cdot 5$
11				$1 \cdot 1$			$6 \cdot 1$		6.1		$\because \cdot 6$
11．					$26 \cdot 0$		\therefore－	$0 \cdot 6.5$	3		$2 \cdot 9$
1.				$1 \cdot 1$	$26 \cdot 0$		5－4		i $\cdot 1$		$2 \cdot 8$
14					$\because 4$		5．0		$\therefore 7$		-3
17							4．6		$3 \cdot 3$		3．41
111				1.11	20.5		$4 \cdot 2$		6． 1		3．1
17					$11+\cdots$	11.19	\because		6．		$3 \cdot \underline{ }$
1					10.		$4 \cdot 3$		8.1		$\therefore \therefore$
11					1%		$4 \cdot 8$		（i．1i		\therefore ！
$21)$					$16 \cdot 2$	$0 \cdot 6.5$	\therefore i		$6 \cdot$		$3 \cdot 5$
$\because 1$					$16 \cdot 6$		$7 \cdot 4$		7.11		$\therefore 1$
22					$16 \cdot 0$	$0 \cdot 75$	9－3		\square		$\therefore \%$
\because					1.51		$11 \cdot 1$	11.7	$7 \cdot 3$	11．${ }^{\text {¢ }}$	：
21					$14 \cdot 5$		12．9		（i．ti		
25.					14．2		14．7		$6 \cdot 11$		
\because					$13 \cdot 6$		16.5		$3 \cdot 3$		
27.					$13 \cdot 0$		1.4		$4 \cdot 5$		
\because		11.	11．2		$12 \cdot 4$	$1 \cdot 11$	$2(1) \cdot 5$	$0 \cdot 6$	$3 \cdot$		
\cdots			11.2		11.8		14.7		3		
33^{3}		11.	11．2	11.	11.2		1－1\％		$3 \cdot 1$		
$\therefore 1$					$10 \cdot 6$				$3 \cdot 5$		

GUICHON CREEK（ABOVE MAMIT LAKE）．
Location．Wrater District No．3，south of township 17，range 21，west 6th meridian．

Records Available．－June 3，1911；January 1，1912，to November 15，1912； April 25，1913，to September 29， 1913.

Winter conditions．－Winter conditions exist during damary，Fepruary and March．when the normal minimum flow is about 5 second－feet．

Gauge．－The gauge is a vertical staff gauge read daily by Miss Lillian Quenville．

Channel．－The channel is about 25 feet in width，and has a bed of sand and gravel．The maximum recorded flow is 4.35 second－feet，which occured on May 16， 1912.

Discharge Measurements．－The curve is well defined by mumerous meter－ ing．

Accuracy．－The accuracy of returns is high，and results are considered to be within 5 per cent of prevailing conditions．

5 GEORGE V., A. 1915
Discharge Measurements of Guichon Creek, above Mamit Lake, 1913.

Note.-Gauge reader, Miss Olive Quenville.

Monthly Discharge of Guichon Creek, above Mamit Lake, for 1913.
(Drainage area, 315 square miles).

		Discharge in Second-Feet.					Run-Off.	
	Monir.	Iaximum.	Minimum.		Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
May		179	41		122	(1).3.	0.44	7, 041
June......		230	5.5		86	(). 27	1).30	5, 111
July.		16.4	28		72	1). 23	(1).23	4.427
Augunt		41	18		24	11.115	(1) 119	1,476
Suptember		24	16	1	18	(). 06	$0 \cdot 07$	1,071

[^15]SESSIONAL PAPER No. 25f
 for 1913.

HAT CREEK AT HAT CREEK RANCH (NEAR ASHCROFT, B.C.).
Location.-Section 21, township 22, range 25, west 6th meridian, just above the crossing of the Cariboo road, Mile 12.

Records Available.- May 9 to August 16, 1911; April 25 to August 2, 1912; April 26 to September 30, 1913.

IVinter Conditions. - Very short spells of severe cold; snowfall very light.
Gauge. -The gauge is a 4 -foot staff nailed to a small tree near the Lillooet road, a short distance above the Hat Creek ranch. Readings were obtaned daily by Thos. Brennan, during the irrigation season.

Channel.-The chamel is straight for 30 or 40 feet above and below the gauge. Water is fairly swift, and there is a possibility that large freshets might cause a shifting of the stream bed.

Accuracy.-The stream was well rated during 191:3, and the accuracy of returns for 1913 is high.

Discharge Meastrements of Hat Creek, at Hat Creek Ranch, 1913.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity:	Gauge Height.	Discharge.
191:			Feet.	Sq.ft.	Ft. per sec.	Feet.	Sec.-ft.
April 26	C. G. Cline	1,055	25	$26 \cdot 3$	1.32	$2 \cdot 21$	34.5
May	k. G. Chizholm	1,055	25	$45 \cdot 6$	$2 \cdot 34$	$2 \cdot 98$	$107 \cdot 4$
May 23	do	1,055	2.5	$46 \cdot 4$	$2 \cdot 45$	$3 \cdot 03$	113.7
May	do	1,055	25	$53 \cdot 8$	2.95	$3 \cdot 51$	$158 \cdot 8$
May 29	do	1,055	25	53.8	$3 \cdot 12$	$3 \cdot 53$	$167 \cdot 2$
Aug 1	do	1,055	24	$21 \cdot 4$	0.88	1.99	18.8

Monthly Discharge of Hat Creek at Hat Creek Ranch for 1913.
(Drainage Area 240 square miles).

SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of Hat Creek at Hat Creek for 1913.

Day.	April.		Mas.		June.		July .		August.		September.	
	Gauge Height.	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Heinht	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height.	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	Discharge	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$
	Feet.	Sec.-ft.	Feet.	$\begin{array}{r} \text { Suc }-\mathrm{ft} \\ 28 \\ 28 \\ 28 \\ 28 \end{array}$	Feet.	Sue it.	Feet.	Soct it	Feet.	Sec.-ft.	Feet.	Sec-it.
1			$2 \cdot 1$		$\begin{aligned} & 3 \cdot 5 \\ & 3 \cdot 6 \cdot 6 \end{aligned}$	161	$3 \cdot 25$	${ }^{135}$	$\stackrel{2}{2} 1$	28	1.92	17
$\frac{2}{3}$					3.6;	$1: 1$	$3 \cdot 1.5$	$11 .$	2.15	3	$\begin{aligned} & 1.92 \\ & 1.92 \end{aligned}$	$\begin{aligned} & 17 \\ & 17 \end{aligned}$
4					3.5	161	2. 9.5	105	2-5	81	1.	17
5.				$\because 1$	$3 \cdot 3$	141	21	1171	$\underline{2} \cdot 1$	\because	1.92	17
+			\cdots	21	3-1.5	125	2 ,	\because	$2 \cdot 1$	\because	1.92	17
7			$\because \cdot 1$	2	3-14.	11.5	$\because 9$	1'1]	$\therefore 1$	\because	1-4	17
8.			$\because \cdot 1$	28	3.15	11.5	$\because 2$	\because	$\because 5$	2		17
9			$2 \cdot 7$		$3 \cdot 1$	12.1	2.7	S	2.45	24	1.92	17
10			$3 \cdot 2$	1.30	3.15	12.5		\%	$\because 11$	$\because 1$	1-92	17
11.			$3 \cdot 0$	1.10	$3 \cdot 1$	120	$\bigcirc \cdot 6$	70	2.0			
12.			$2 \cdot 9$	1.17)	$3 \cdot 0$	1111	$2 \cdot 6$	711	$\underline{11}$	21	$1 \cdot 2$	17
13.			$\because 8$	0. 89	$\because 95$	10.5	\cdots	IT	1.95	1	1.95	1
14.			$2 \cdot 7$	0.79	$2 \cdot \mathrm{j}$	97	2.7	\square	1.4	14	2.41)	21
15.			2.7	11.9	2.8	4	$2 \cdot 6$	T11	1.9	15	1.95	
16.			2.7	11.9	$2 \cdot 7$		2-\%	(..)	1.9	15	1.95	
17.			$2 \cdot 7$	11.79	\cdots	74	2.5	(i)	1.9		1.92	17
18.			\cdots	11.711	$2 \cdot 6$	7	2.25	18	1.92	17	1.92	17
19.			2.6 2.8	11.711 0.89	2.65 3.0	111	- $2 \cdot 3$	43 39	2.0 2.1	21	$\begin{aligned} & 1 \cdot 92 \\ & 1 \cdot 92 \end{aligned}$	17 17
21.			$\underline{2} \cdot 4$	$1 \cdot 00$	$2 \cdot 85$			3.5				
22.			$3 \cdot 1$	1.11)	\cdots	$\bigcirc 9$				35	1.1'	17
23.			$3 \cdot 1$ $3 \cdot 3$	1.20 1.41	2.7	79 89	2.1 2.05	28	\cdots	39 3 13	$\stackrel{2}{2.0}$	$\because 1$
25				$1 \cdot 61$	2.95	1.11%	2.0	21	2.25			-18
26.	$2 \cdot 2$	3.5	3.7	1.82	$3 \cdot 25$	1.35	1.95					
27.	$2 \cdot 2$	35	$3 \cdot 9$	$2 \cdot 03$	3	$1 \cdot 92$	$1 \cdot 9$	1.7	$2 \cdot 2$	37	1.4	18
28.	2.2	35	$3 \cdot \mathrm{~s}$	1.92	3.7	1-2	1.95	18	202	\because	1.9 .3	18
29.	$2 \cdot 1$	28	$3 \cdot 6$	$1 \cdot 71$	3.5	1.f1	$2 \cdot 05$	24	1.92	17	1. 1.5	15
30	$2 \cdot 1$	28	\% 1	$1 \cdot 51$	$3 \cdot 35$	1-41i	$2 \cdot 05$	24	1.92	17	1.9	18
31.	$2 \cdot 1$	\because	$3 \cdot 3$	$1 \cdot 11$			$2 \cdot 05$	24	1.92	17	1.95	18

hat creek (upper station).
Location.-Section 18, township 19, range 26, west 6th meridian at Colley's ranch, just above the Hammond diversion.

Records Available.-April 22, 1911, to December 31, 1911; January 1, 1912, to November 18, 1912; April 30, 1913, to December, 1913.

Winter Conditions.-Stream frequently open during winter months. Snowfall is about 4 feet per annum, while the mean annual rainfall is probably about 10 to 12 inches, making the total annual precipitation 14 inches to 16 inches.

Gauge.-A Standard vertical staff gauge is used, which is read daily by Thos. King.

Channel.-The channel is 12 to 14 feet in width, and is straight above and below the gauge. The control is good.

Discharge Measurements.-Well-distributed measurements have been obtained covering the stream's range. Neterings are made in the box flume above the Hammond diversion weir.

Accuracy.-Conditions for metering are good, and gauge readings were carefully taken. Accuracy is fairly high (within 10 per cent).

HAT CREEK.

Hat creek is an important and contentious irrigation stream in the Dry Belt of British Columbia. It rises in the hills about 15 miles west of Ashcroft, in the Hat (reek forest reserve, at an elevation of about 4,300 feet; and after flowing northerly for nearly 40 miles discharges into Bonaparte Piver from the west, about 14 miles from Ashcroft, at an elevation of about 2,000 feet.

It is part of the Bonaparte-Thompson drainage. The drainage area of Hat areek above the mouth is about 240 square miles, and above the Hammond diversion is about 47 square miles.

The creek varies in width from 15 to 20 feet, and is from 1 to 3 feet deep.
The precipitation at the mouth is only about from 9 inches to 10 inches, while at Upper Hat creek it probably is from 10 inches to 12 inches.

The summers are quite hot and generally dry, the evenings being cool. The winters are long and severe. The snowfall in Upper Hat creek is athout 4 feet, but is less near the mouth.

Hat C'reek valley is mostly timbered with bull pine, poplar, and some willow, with a few open patches of land.

The hills are mostly open range lands, or timbered with bull pine, jack pine, spruce, and fir.

The valley varies in width from 1 mile to several hundred yards. The hills in the upper part of the watershed rise to a height of 5,000 feet above the sea.

The upper bench lands, owing to their elevation above Hat creek, cannot be irrigated from the main stream, and several of the small tributaries are used, but the supply of water is not sufficient to give promise of much future development.

In the valley there are a number of good farms and ranches, all requiring irrigation. The soil is mostly a sandy loam with sandy and gravelly subsoil. Near the lower part of the valley, fruit is successfully grown, but in the upper valley of Hat creek, ranching and mixed farming must be resorted to.

Hat Creek ranch, at the mouth of Hat Creek, uses water for irrigation. Water is also used be Robertson Duck (Chinaman), Parke, Darragh, simith, Pocock, and King, while the Indians in the lower valley use a little. In Cpper Hat creek the growing season is short, and not as much water is necessary as near the mouth.

Exclusive of several water records on small tributaries, there is a total of 8,450 miners inches (237 c.f.s.) recorded on Hat creek. Dany of these records, appurtenant to land, in Bonaparte valley, have never been used, nor probably will be, owing to impracticability and the heary expense involved in the construction of the necessary irrigation works. It is probable that many of these old records will be cancelled by the British C'olumbia Board of Investigation.

There are also several water records allowing the diversion of water from C'pper Hat creek into the Oregon Jack creek divide, for use on lands near Asheroft.

IIr. IV. H. Hammond, who owns the Basque ranch, holds the Mimmaterriet and Langley records for about 600 miner's inches, dated 1871 and 1883, and diverts water from Cpper Hat ereek at Colley's homestead. His canal is about 2 miles long, and delivers the water into (Oregon Jack creek divide reserveir site, whence it gradually seep)s into ()regon Jack ereek and down that stream to Hammond's ditch to Basque ranch. There is considerable water lost through seepage, percolation and evaporation in the swampy reservoir.

The Asheroft Water, Electric and Improvement Company also holds a reeord from Upper Hat ereek for 1.000 miner's inches, dated 1906 , allowing the diversion of the surplus waters of Hat creek, said waters to be stored in the same ()regon Jack (reek divide reservoir, then taken down Oregon Jack creek to be used on certain lands west and north of Asheroft.

SESSIONAL PAPER No. $25 f$
This record has never been operated, and there is a dispute between this company and the owner of the Basque ranch regarding the rights to use the Oregon Jack creek divide reservoir.

The company proposes to construct large storage works, dams, etc., sufficient to store from 8,000 to 10,000 acre-feet.

The dispute between the two rival holders will have to be settled by the British Columbia Board of Investigation. In the meantime the reservoir, which is Dominion land, has not been granted to either applicant.

Hat creek has many small tributaries, viz: (from the left going upstream) Boundary, Parks, Cattle, Medicine, and Blue-earth creeks; (from the right going upstream) Graves, Anderson, Pocock, King, and Colley creeks. Miscellaneous measurements of discharge have been taken on several of these tributaries.

At the head of Blue-earth creek, which enters above Hammond's diversion, is a small storage lake, Blue-earth lake. For details of Blue-earth reservoir see "Blue-earth creek".

There have been several hydrographic stations established on Hat creek, viz: Hat creek (at Colley's ranch), Hammond's ditch, and Hat creek (at Hat Creek ranch) near mouth.

Measurements were also made at Hat Creek ranch, showing the quantity of water used there for irrigation.

Teasurements were taken to find the lose in the Hemmond diteh between the intake and the reservoir in Oregon Jack divide.

Discharge Measurements of Hat Creek, above Hammond's Ditch 1913.

Date.	Hedrographer,	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Wult	Area of Section.	$\begin{gathered} \text { l:....n } \\ \text { Velocity. } \end{gathered}$	Gauge 11.7.1.1	Discharge.
1913			Feet.	sq. ft.	Fit. per sec.	Feet.	Sec. ft .
$\begin{aligned} & \text { April } 23 \\ & \text { Aug. } 3 . \end{aligned}$	(lhe it ('hithalm K. G. Chisholm	$\begin{aligned} & 1,0 ; 105 \\ & 1,050 \end{aligned}$	$\begin{array}{r} 11.7 \\ 9 \cdot 0 \end{array}$	5. 5.2 5.	$\begin{aligned} & 1 \cdot 14 \\ & 1 \cdot(11) \end{aligned}$	$0 \cdot 0 \cdot 3$	

Nonthly Discharge of Hat Creek, above Hammond's Ditch for 1913.
(Drainage area, 47 square miles).

Daily Gauge Heights and Discharges of Hat Creek above Hammond's Ditch for 1913.

		April.		May.		June.	
	Day.	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge.
		Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1				$0 \cdot 25$	$6 \cdot 7$	0.95	41.8
2.				$0 \cdot 19$	$4 \cdot 8$	0.85	$35 \cdot 5$
3.				$0 \cdot 23$	$6 \cdot 0$	0.95	$41 \cdot 8$
4.				$0 \cdot 21$	$5 \cdot 3$	$0 \cdot 85$	$35 \cdot 5$
5.				$0 \cdot 25$	$6 \cdot 7$	0.75	29.7
6.				$0 \cdot 23$	$6 \cdot 0$	$0 \cdot 65$	24.5
7.				$0 \cdot 40$	$12 \cdot 5$	$0 \cdot 65$	$24 \cdot 5$
8.				$0 \cdot 25$	6.7	$0 \cdot 60$	$22 \cdot 0$
9.				$0 \cdot 85$	$35 \cdot 5$	$0 \cdot 55$	$19 \cdot 5$
10.				$0 \cdot 85$	$35 \cdot 5$	$0 \cdot 60$	$22 \cdot 0$
11.				0.75	29.7	0.55	$19 \cdot 5$
$12 .$				$0 \cdot 65$	$24 \cdot 5$	0.45	$14 \cdot 7$
$13 .$				$0 \cdot 65$	$24 \cdot 5$	0.45	14.7
14.				$6 \cdot 00$	$22 \cdot 0$	$0 \cdot 45$	$14 \cdot 7$
15.				$0 \cdot 65$	$24 \cdot 5$	0.45	$14 \cdot 7$
16.				$0 \cdot 55$	$19 \cdot 5$		
$17 .$				$0 \cdot 60$	$22 \cdot 0$	$0 \cdot 45$	$14 \cdot 7$
$18 .$				$0 \cdot 55$	19.5	0.45	$14 \cdot 7$
19.				(0.65	24.5	$0 \cdot 55$	19.5
20.				$0 \cdot 75$	29.7	$0 \cdot 55$	$19 \cdot 7$
21.				$0 \cdot 60$	$22 \cdot 0$	0.45	$14 \cdot 5$
22.				0.85	$35 \cdot 5$	$0 \cdot 50$	$17 \cdot 0$
23.				0.75	$29 \cdot 7$	0.45	14.7
24.				0.95	$41 \cdot 5$	$0 \cdot 55$	$19 \cdot 5$
25.				0.35	$35 \cdot 5$	0.55	$19 \cdot 5$
26.				1.05	$48 \cdot 7$	0.45	24.5
27.				0.95	$41 \cdot 8$	$0 \cdot 65$	35.5
28.				10.5	$48 \cdot 7$	0.75	29.7
29.		0.25	$6 \cdot 7$	(0.9.9	$41 \cdot 5$	0.75	29.7
30.		$0 \cdot 15$	$3 \cdot 7$	$0 \cdot 9.5$	$41 \cdot 5$	0.75	$29 \cdot 7$
31.					35.5		

SESSIONAL PAPER No. 25 f
Daily Gauge Heights and Discharges of Hat Creek above Hammonds Ditch for 1913.-Continued.

Das.	July.		August.		September.		October.		Novernber.		December.	
	Gauge Height.	Discharge.	Giture Height	Discharge	G:ane Height.	Discharge	Gaturn Height	Di= charge.	Ci lum. Height	Discharge.	Cauge Height	Discharge
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.
1	$0 \cdot 65$	24.5	$0 \cdot 29$	$\bigcirc \cdot 1$	$0 \cdot 20$	5	$0 \cdot 16$	$4 \cdot 0$	11. 1.5	$3 \cdot 7$	11. 1.5	. 7
2	$0 \cdot 60$	ㄴ.11	$0 \cdot 25$	6.7	$0 \cdot 20$	5-11	$0 \cdot 16$	$4 \cdot 0$	1). 1.5	$3 \cdot 7$	11.1.j	3.7
3	$0 \cdot 55$	19.5	$0 \cdot 25$	$6 \cdot 7$	$0 \cdot 20$	$5 \cdot 0$	11.14	$4 \cdot 1)$	(). 15	$3 \cdot 7$	11. 1.5	3
4.	(1. 5.5	$10 \cdot 5$	0.25	6.7	$0 \cdot 20$	5. 6	$0 \cdot 16$	$4 \cdot 11$	0.15	3.7	$0 \cdot 15$	3.7
5	(1). 5.9	19.5	$0 \cdot 25$	(1).7	$0 \cdot 20$	$5 \cdot 11$	$0 \cdot 16$	$4 \cdot 0$	0. 15	$3 \cdot 7$	$0 \cdot 15$	$3 \cdot 7$
6	$0 \cdot 55$	119.7	$0 \cdot 25$	$6 \cdot 7$	$0 \cdot 20$	$5 \cdot 0$	(1).1i	$4 \cdot 0$	11.1 .5	$3 \cdot 7$	11.1 .5	$3 \cdot 7$
7.	$0 \cdot 55$	$19 \cdot 5$	0.25	6.7	$0 \cdot 20$	5. 11	(1).1;	$4 \cdot 0$	11.1.)	3.7	(). 15	$3 \cdot 7$
8.	11. 3 : 3	18.5	$0 \cdot 25$	$6 \cdot 7$	(1.2)	$5 \cdot 0$	$0 \cdot 16$	$4 \cdot 11$	11.15	$3 \cdot 7$	(). 15	3.7
9	11.511	$17 \cdot 11$	$0 \cdot 25$	$6 \cdot 7$	$0 \cdot 20$	$5 \cdot 0$	$0 \cdot 16$	$4 \cdot 0$	$0 \cdot 15$	$\therefore .7$	$0 \cdot 15$: $: 7$
10.	11.8.)	19.5	11.2 .5	$6 \cdot 7$	$0 \cdot 20$	$5 \cdot 11$	$0 \cdot 16$	$4 \cdot 0$	$0 \cdot 15$	$3 \cdot 7$	$0 \cdot 15$	$3 \cdot 7$
11.	$0 \cdot 50$	$17 \cdot 0$	$0 \cdot 25$	6.7	$0 \cdot 20$	5. 11	0.16	$4 \cdot 0$	(). 15	,	$0 \cdot 15$	$3 \cdot 7$
12.	(1).4.)	14.7	$0 \cdot 25$	6.7	$11 \cdot 211$	$5 \cdot 0$	$0 \cdot 16$	$4 \cdot 0$	$0 \cdot 15$	$3 \cdot 7$	$0 \cdot 15$	$3 \cdot 7$
13.	(1. 4.7	11.7	11.9	6.7	$0 \cdot 20$	$5 \cdot 0$	$0 \cdot 25$	6.7	0.15	$3 \cdot 7$	$0 \cdot 10$	\cdots
14.	$0 \cdot 45$	$14 \cdot 7$	11.2 .9	6.7	$0 \cdot 20$	5.11	$0 \cdot 35$	$10 \cdot 5$	0. 15	$3 \cdot 7$	(). 10	$2 \cdot 5$
15.	$0 \cdot 43$	13.8	$0 \cdot 28$	$7 \cdot 8$	$0 \cdot 20$	$5 \cdot 0$	$0 \cdot 15$	$3 \cdot 7$	$0 \cdot 15$	8.7	$0 \cdot 10$	$2 \cdot 5$
16.	11. 1.5	$14 \cdot 7$	$0 \cdot 29$	¢ 1	$0 \cdot 17$	$4 \cdot 2$	$0 \cdot 15$	$3 \cdot 7$	$0 \cdot 15$	$3 \cdot 7$	$0 \cdot 10$	2.5
17.	$0 \cdot 40$	12.5	0. 33	3.7	$0 \cdot 17$	$4 \cdot 3$	$0 \cdot 15$	3.7	$0 \cdot 15$	$\therefore 7$	11. 111	$2 \cdot 5$
18.	11. 4.3	13.)	$0 \cdot 35$	1.05	$0 \cdot 17$	$4 \cdot 2$	0.0 .5	1i.7	11.1.)	$\therefore 7$	11.111	$\because \cdot 5$
19	$0 \cdot 39$	$12 \cdot 1$	$0 \cdot 35$	1.05	$0 \cdot 17$	$4 \cdot 2$	$0 \cdot 25$	$6 \cdot 7$	$0 \cdot 15$	$\therefore .7$	$0 \cdot 10$	$2 \cdot 5$
20	$0 \cdot 40$	$12 \cdot 5$	$0 \cdot 30$	8.5	$0 \cdot 17$	$4 \cdot$	0.25	$6 \cdot 7$	$0 \cdot 15$	$3 \cdot 7$	0.10	$\because \cdot 5$
21.	$0 \cdot 35$	$10 \cdot 5$	$0 \cdot 30$	- 0	11.17	$4 \cdot 2$	0.15	$3 \cdot 7$	0.15	3.7	(1. 11)	$2 \cdot 5$
2	$0 \cdot 35$	10.5	0.25	$6 \cdot 7$	$0 \cdot 18$	$4 \cdot 5$	$0 \cdot 15$	3.7	$0 \cdot 15$	1.7	$0 \cdot 10$	$2 \cdot 5$
23	(1) 3.3	$9 \cdot 7$	$0 \cdot 25$	$6 \cdot 7$	$0 \cdot 18$	$4 \cdot 5$	$0 \cdot 15$	8.7	0.10	$2 \cdot 5$	(). 10	$2 \cdot 5$
24	11.83	$9 \cdot 7$	$0 \cdot 25$	6.7	$0 \cdot 18$	4.5	1).1.	8.7	$0 \cdot 10$	$2 \cdot 5$	(). 10	$2 \cdot 5$
25.	$0 \cdot 35$	$10 \cdot 5$	$0 \cdot 25$	$6 \cdot 7$	$0 \cdot 18$	$4 \cdot 2$	$0 \cdot 15$	$3 \cdot 7$	0.10	$2 \cdot 5$	0. 10	$2 \cdot 5$
26.	(1) . . ;	9.7	0.25	i. 7	0.18	$4 \cdot 5$	$0 \cdot 15$	$3 \cdot 7$	$0 \cdot 10$	2.5	$0 \cdot 10$	$2 \cdot 5$
27.	$0 \cdot 30$	\square	$0 \cdot 25$	13.7	$0 \cdot 18$	$4 \cdot 5$	11.1.)	$3 \cdot 7$	11. 111	$2 \cdot 5$	(). 10	$2 \cdot 5$
28	0.27	7.1	0.23	$6 \cdot 0$	$0 \cdot 18$	$4 \cdot 5$	0.15	3.7	(1. 111	$\therefore ;$	11.11	2.5
29	$0 \cdot 25$	6.7	$0 \cdot 23$	$6 \cdot 0$	11.17	$4 \cdot 2$	$0 \cdot 15$	$3 \cdot 7$	0.10	$2 \cdot 5$	(). 10	$2 \cdot 5$
30.	$0 \cdot 25$	$6 \cdot 7$	$0 \cdot 23$	if. 11	$0 \cdot 17$	$4 \cdot 2$	$0 \cdot 15$	3.7	$0 \cdot 10$	$2 \cdot 5$	0.10	$2 \cdot 5$
31.	$0 \cdot 25$	1.7	$0 \cdot 23$	6.0			(1).1.)	$3 \cdot \%$	ItI		$0 \cdot 10$	$2 \cdot 5$

HAT CREEK (HAMMOND'S DIVERSION.)
Location.-Section 17, township 19, range 26, west 6th meridian.
Records Available.-Computed indirectly during 1911 (irrigation season); May 8 to August 25, 1912; May 28 to September 28, 1913.

Winter Conditions.-Snowfall about 4 feet in winter months. Water in ditch only during irrigation season.

Gauge.-Vertical staff gauge, read daily during irrigation period by Thos. King.

Channel.-Ditch is about 6 feet wide and 2 feet deep, with a carrying capacity of about 20 second-feet The loss by seepage in the gravelly portions is considerable, as well as in the timber fluming.

Discharge Measurements.-The rating curve is well defined, frequent meterings having been made.

Accuracy-Accuracy of returns appended is high, and are considered to be within 10 per cent of conditions actually obtaining.

HAT CREEK (IN HAMMOND'S DITCII.)

Hammond's ditch diverts water from Upper Hat creek at Colley's ranch, about 22 nd mile from the mouth of the stream. It discharges the water into a large swampy reservoir in the divide between Hat creek and Oregon Jack creek, whence the water runs into ()regon dack reek. and is used for irrigation
on the Basque ranch, southwest of Asheroft in the Thompson drainage area. A large quantity of the water diverted by Hammond's ditch is lost by seepage and evaporation in the so-called reservoir before it reaches Oregon Jack creek.

The ditch is nearly 2 miles long. It is mostly side-hill ditch, with several lengths of timber fluming. It runs along the lower contour of the hills to the south of the divide. The ditch is about 6 feet wide and 2 feet deep. It has a maximum capacity of about 20 c.f.s. The greatest quantity that has yet been diverted at any time is 14 c.f.s., the mean velocity being only 1.5 feet per second.

A regular gauging station was established in Hammond's ditch on May 9, 1912, and the readings were taken after the headgate was closed on August 26; also during season of 1913 .

The gauge is a vertical staff fastened to the side of the overflow spillway, about 10 feet below the overflow sluiceway, and 100 yards below the intake. The zero of the gauge is referred to one bench-mark.

The meter measurements were made in the spillway box, by means of a current-meter attached to a wading rod.

In 1911, the amount of water diverted was computed from the difference between the daily discharges recorded by the upper and lower gauges at the gauging station at Colley's ranch.

Monthly Discharge of Hammond's Ditch at Head Gates for 1913.

Month. Dischinge in Second-Feet.					Run-Off.
		Maximum.	Minimum.	Mean.	Total in acre-feet.
May		$12 \cdot 1$	0.0	$1 \cdot 6$	96
June.		$14 \cdot 3$	$9 \cdot 9$	$11 \cdot 1$	660
July.		$11 \cdot 0$	$5 \cdot 8$	$8 \cdot 6$	531
August		$5 \cdot 8$	$2 \cdot 8$	$5 \cdot 3$	324
September		$4 \cdot 6$	$0 \cdot 0$	$3 \cdot 3$	196
Total quantity diverted.					1,807

Discharge Measurements of Hammond's Ditch at Head Gates for 1913.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height	Discharge.
1913.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Aug. 3.	K. G. Chisholm	${ }^{1055}$	$5 \cdot 5$	$3 \cdot 2$	${ }_{\text {1 }}^{1.21}$	0.78 0.56	5.08 3.26
" 3	do	1055	$5 \cdot 5$		0.80	(1.47	$2 \cdot 33$
" 3	do	1055				$0 \cdot 18$	0.0

SESSIONAL PAPER No． $25 f$
Daily Cadue Heights and Discharges of Hat Creek in Hammonds Ditch at Head Gates for 1913.

Day．	May．		June．		July．		August．		September．	
	Gauge Height	Dis－ charge	Gauge Height	Dis－ charge	Gauge Herght	Dis－ rhiren	Gauge Height．	Dis－ charge	Gauge Heicht	Dis－ ＂harme
	Feet	Sec．－ft．	Feet	sec．－ft．	Feet	Sec．－it．	Feet．	Sec．－ft．	Feet．	Sec－it．
1			1.08	$12 \cdot 1$	0.98	（1．4	11.78	$5 \cdot 8$	11.5	$\underline{2-6}$
\because			1.10	$12 \cdot 1$	0.94	9．9	11．	$5 \cdot 4$	（1）（6．）	：\cdot ：$;$
3			1－15	$14 \cdot 3$	1.13	11.11	11．	$5 \cdot 5$	11． ¢ 5	$4 \cdot 1$
4			$1 \cdot 16$	$14 \cdot 3$	0.93	－ 17	＂こ	$5 \cdot \mathrm{~s}$	（1）+1.3	$3 \cdot 3$
5			$1 \cdot 11$	$12 \cdot 1$	10．93	$9 \cdot 4$	11．	$5 \cdot 4$	$0 \cdot 65$	4．1
6			1.08	$12 \cdot 1$	0.98	$9 \cdot 9$	11．「	5．s	$0 \cdot 6$	1．1
7			$1.11 \times$	$12 \cdot 1$	11.19	9.9	11.9	－3	0.71	$4 \cdot 6$
8			$1 \cdot 119$	$1 \cdot 1$	11.95	$9 \cdot 9$	11．7	$5 \cdot 5$	10．68	$4 \cdot 1$
3			$1 \cdot 13$	$12 \cdot 1$	$1 \cdot 43$	11.11	11.8	5． 5	（0．05	4．1
10.			1.08	$12 \cdot 1$	0.98	9.9	11．76	5．7	$0 \cdot 68$	$4 \cdot 1$
11.			11.9	$9 \cdot 9$	11．93	4.4	0.73	$4 \cdot 9$	$0 \cdot 65$	$4 \cdot 1$
12			$1 \cdot 0.3$	$11 \cdot 0$	0.98	9．9	0.73	$4 \cdot 9$	$0 \cdot 6$	$4 \cdot 1$
13.			$1 \cdot 16$	$12 \cdot 1$	0.98	9.9	0.73	4.9	0.68	$4 \cdot 1$
14			11．93	$9 \cdot 9$	11．91i	$9 \cdot 5$	（1）． 83	$4 \cdot 9$	$0 \cdot 68$	$4 \cdot 1$
1.5			$1 \cdot 03$	$11 \cdot 11$	0.94	9．11	0.73	$4 \cdot 9$	$0 \cdot 66$	$3 \cdot 8$
16.				9.9	0.93		11.78	$5 \cdot 8$	0.66	3.7
17.			$1 \cdot 13$	$11 \cdot 0$	（0．96）	$9 \cdot 5$	0.78	$5 \cdot 8$	$0 \cdot 63$	$3 \cdot 3$
18.			$0 \cdot 98$	9.9	0.93	－+1	0.7	$5 \cdot 8$	$0 \cdot 63$	$3 \cdot 3$
19.			11.9	9．9	11.94	$4 \cdot 11$	0.75	i，	$0 \cdot 63$	$3 \cdot 3$
20.			$0 \cdot 95$	$9 \cdot 9$	0.93	$\therefore 10$	0.78	$5 \cdot 5$	$0 \cdot 63$	$3 \cdot 3$
21			1.03	11.0	0.88	$7 \cdot 4$	0.78	i	0.63	$3 \cdot 3$
22			1．11：	11.0	0.88	$7 \cdot$	0.7	$5 \cdot 6$	$0 \cdot 63$	$3 \cdot 3$
23			11.98	$9 \cdot 9$	11．54	7－3	0.78	i．${ }^{\text {d }}$	$0 \cdot 63$	$3 \cdot 3$
24			$1 \cdot 03$	11.0	0.83	$6 \cdot 8$	0.78	$5 \cdot 8$	$0 \cdot 6.3$	$3 \cdot 3$
25			0.95	$9 \cdot 9$	$0 \cdot 88$	$7 \cdot 8$	0.78	$5 \cdot$	$0 \cdot 63$	$3 \cdot 3$
26			0.98	9.9	0.83	6.3	11.73	$4 \cdot 9$	$0 \cdot 63$	$3 \cdot 3$
27			10．93	$9 \cdot 9$	（1．75	$5 \cdot 11$	$0 \cdot 6 \mathrm{~s}$	$4 \cdot 1$	$0 \cdot 6,3$	$3 \cdot 3$
28	1.08	$12 \cdot 1$	1.03	$11 \cdot 0$	11.7	5．	$0 \cdot 65$	$4 \cdot 1$		
391	1.08	$12 \cdot 1$	1.03	$11 \cdot 0$	11．in	$5 \cdot$	11．1it	3.5		
30.	1.115	$12 \cdot 1$	0.95	$9 \cdot 9$	11．$\cdot 2$	6.4	0.63	$3 \cdot 3$		
31．．．．．．	1.05	$12 \cdot 1$			11.75	5.4	0.58	$2 \cdot 8$		

HEFFERLY CREEK（LOWER STATION）

Location．－Section 11，township 22，range 17，west 6 th meridian．
Records Available．－August 19，1911，to October 31，1911；April 3，1912，to September 15，1912；April 13，1913，to September 15， 1913.

Winter Conditions．－Stream is usually frozen over during winter months．
Gauge．－Vertical staff gauge，read daily by J．W．Austin．
Channel．－The channel is about 15 feet in width and the bed rocky．The flow varies from a minimum of zero to a maximum of 100 coble feet per second． The flow is partly subject to artificial regulation hy a dam on Hefferly lake．

Discharge Measurements．－The stream is well rated except for a very short period at the peak of the freshet．

Accuracy．－The accuracy of returns is high（within 5 per cent）．

HEFFERIS CREFK。

Hefferly creek has its source in Hefferly lake，near the divide into Louis （reek，at an elevation of 3,100 feet and，flowing westerly，empties into North Thompson river，near Hefferly creek post office（about 14 miles from Kamloops），at an clevation of 1,150 feet．The stream is athout 10 mile lomg， from 15 to 25 feet wide，and from 6 inches to 2 feet deep．Hefferly lake is about 2 miles long and several hundred yards wide，and is used as a storage reservoir for irrigation purposes．The water users have co－operated and constructed a small dam at the outlet of the lake，and the spring fresthe is mostly

5 GEORGE V., A. 1915
conserved. It is not possible to greatly increase the capacity of the reservoir without damming the easterly end of the lake as well, on account of the low divide into Louis creek.

Hefferly creek, like so many of the streams in the dry belt, is vastly overrecorded for irrigation purposes, but by storage and careful use there is enough water for all the lands in the valley and at the mouth. The earliest records are apurtemant to the Austen and Anderson places, near the mouth of the creek, and the waters of the creek are used mostly on these lowlands. The Anderson interests have recently been formed into the North Thompson Ranching Company, and it is proposed to construct a high line canal, beginning near the lake, and irrigate several thousand acres of sloping bench lands on the south side of the Hefferly valley. Austen owns a large tract of land at the mouth of the creek, and has purchased some of Anderson's bottom lands. There are several small farms in the valley, but they depend on the water that is not required by Anderson and Austen.

The hills of the Hefferly drainage rise to a height of 4,000 feet, and are fairly well covered with timber, bull pine, jack pine, and some fir. The upper slopes are excellent range lands.

The precipitation of Hefferly drainage is probably about 20 inches, near the headwaters, which rise near Louis creek and the easterly limit of the dry belt. At the mouth of the creek the precipitation is not more than 10 inches per annum. with only a small rainfall during the growing season.

Hefferly Creek, below Hefferly Lake.

This gatuging station is a combination of three stations, viz: Hefferly creek, upper station, Anderson's diversion, and Crawshaws ditch (No. 239). These three stations were established on June 25, 1911, by C. G. Cline, and gauge readings were taken during the irrigation season of 1911 and 1912. The object of the three stations was to measure the amount of water used by each ditch, and by combining all three to obtain the total flow of the creek coming from Hefferly lake. Noreover, it was difficult to obtain a gauge reader for a station above Anderson intake.

A vertical staff gauge was placed at each station, and the datum of each was referred to three bench-marks.

The data of discharge here given were obtained, as has been stated, hy combining the flow of all three stations. The quantity of water ruming in the Anderson and Crawshaw ditches is also published.

> Hefferly Creek, at mouth.

This station was established on August 19, 1911, by C. G. Cline. It is located above Austen's diversion, near the mouth of the ereek, about 100 yards upstream from the Hefferly (reek bridge, and 40 feet from the road. The gauge is a vertical staff, 5 feet long, and is nailed to a fallen fir tree on the left bank of the creek. The datum of the gauge is referred to three bench-marks. The banks are from 3 to $\overline{5}$ feet high, and do not overflow at high water. Measurements are made with a current-meter he the wading method, at a section about 100 feet below the gauge, This station shows the total flow of Hefferly creek, exeept that which is used by Anderson and (rawshaw, and includes the flow of Edwards ereek. Hefferly ereek below the Austen headgates is dry during the irrigation season, as nearly all the water is used.

SESSIONAL PAPER No. 25 f
Discharge Measurements of Hefferly Creek at Lower Station, 1913.

	Date.	Hydrographer.	Meter No.	Width.	Area of section.	$\begin{gathered} \text { Mean } \\ \text { Velocity. } \end{gathered}$	Gauge Height.	Discharge.
				Feet.	sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
June	25	H. J. E. Kers	1,057	13	$10 \cdot 1$	1.04	1-32	$10 \cdot 5$

Monthly Discharge of Hefferly Creek at Lower Station for 1913.

	Month.	Discharge in Second-Feet.				Rux-Off.	
		Masinum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	Total in acre-feet.
- Inrel		2117	7.5	10	$0 \cdot 15$	$0 \cdot 17$	590
May.		2, \%	A.!	$17 \cdot 3$	$0 \cdot 26$	$0 \cdot 30$	1,060
June		$16 \cdot 1$	7.5	11.7	-1"	(). 18	025
July		12.9	$3 \cdot 3$	\cdots	[1] 11	$0 \cdot 13$	450
August..		$11 \cdot 0$	$2 \cdot 11$	19.9	$0 \cdot 11$	$0 \cdot 13$	420

Note.-Accuracy "A".
Daily Cafge Heights and Discharges of Hefferly (reek at Lower Station for 1913.

Div.	April.		May.		June.		July.		August.		September.	
	$\begin{aligned} & \text { (ianire } \\ & \text { Heirht } \end{aligned}$	$\begin{aligned} & \text { Din- } \\ & \text { (harse } \end{aligned}$	Gauge Hersht	Discharge.	Gauge H1:~ht	I)i=charge	(i:111: Height.	Discharge	Gauce Height.	Discharge.	(i.....! Hewhit	I) ischarge
	Feet.	Sce: -1t.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	1 Int	Sec.ft.
1			1.35	$12 \cdot 1$	$1 \cdot 1$	14.0	1.35	$12 \cdot 1$	1.0	,	$1 \because$	
2			$1 \cdot 3$	$10 \cdot 3$	1.4	$14 \cdot 11$	$1 \cdot 35$	$12 \cdot 1$	$1 \cdot 1)$,	$1 \cdot 97$	
3			1.25	- $\cdot 1$	1.4	$14 \cdot 0$	$1 \cdot 3$	$10 \cdot 3$	1197	$\underline{2} \cdot 9$	$1 \cdot:$	
4			1.25	- 4.4	$1 \cdot 3$	11.3	$1 \because$	1...	119.5	\therefore '	$1 \cdot 32$	
5			$1 \cdot 25$	8.9	1. ${ }^{\text {; }}$	111. ${ }^{\text {a }}$	$1 \cdot$;	10.3	090	$\therefore 11$	1-30	
6.			1-3	3.9	13	$10 \cdot 3$	$1 \cdot 3$	$10 \cdot 3$	1192	$\therefore 1$,	$1 \cdot 27$	
7.			1-2.5	- ${ }^{\prime}$	1. ${ }^{\text {a }}$	$10 \cdot 3$	12	- .	1 -	$7 \cdot 5$	1-2\%	
8.			1.2)	...	13	$1 . .3$	1.1.5	,	132	$11 \cdot 0$	$1 \cdot 25$	
9.			$1 \cdot 1$	$14 \cdot 0$	1.3	111:3	1.15	1 ;	1.3	$10 \cdot 3$	1.2	
10.			1.7	\because is	$1 \cdot 2$	- 5	$1 \cdot 15$	1.	125	$\bigcirc \cdot 4$	1.2.j	
11.			$1 \cdot 6.5$	2-:	1 -	7	11.1	1. :	129	$\because 1$	1.25	
112			1.7	\therefore	12	5%	117	1.	$1 \cdot 27$	11.	$1 \cdot 2.5$	
13	1.3	$10 \cdot 3$	1.1,	23.2	1.	- :	$1 \cdot 2 \cdot$	- 1	127	4	$1 \cdot \therefore$	
14.	$1 \cdot 2$	- ;	1.1,	23.2	1.2	- :	1 -	11.0	12.5	$\cdots!$	1-22	
15	$1 \because$	$\therefore 7$	$1 \cdot 1 ;$	$23 \cdot 2$	1.2	$7 \cdot 5$	1.37	1:	127		$1 \cdot 2$	
16	1.3	$10 \cdot 3$		$20 \cdot 7$	$1 \cdot$	-	1 -	11.0	125	$18 \cdot 9$		
17	$1 \cdot 3$	$10 \cdot 3$	$1 \cdot \cdots$	$21) \cdot 7$	$1 \because$	\div	$1 \cdot 27$	" ;	12	\square		
18	1.4	14.10	13	$2(1) 7$	12	\because	$1-$	$3 \cdot 1$	1-1	\because		
1.4	1.7	1-1	1.55	$210 \cdot 7$	12	\because	$1-$	7.5	12	\because		
20.	1.5	18.2	1.5	18.2	$1 \cdot 2$	\div	$1 \cdot 15$	1.)	12	\cdots		
21.	1.5.5	$20 \cdot 7$	1.5	1-2	12	7 ;	$1 \cdot 15$	\because;				
22	1.7	$18 \cdot 2$	15	18.2	1,	$12 \cdot 1$	$1 \cdot 12$; ',	12	7%		
23	1.1	11.11	1 i	18.2	11	14.11	17	1.1,	$1 \cdot 17$	6.8		
24.	1.1	14.()	1 i	1-	11	14.1	1 ;	12	$1 \cdot 17$	6.6		
25.	1.1	$14 \cdot 0$	1.5	18.2	1 i	$12 \cdot 1$	1 '	$3 \cdot 7$	1.15	1, ${ }^{\text {a }}$		
26	1.1	11"	1.7	1- ?	1 ;	$12 \cdot 1$	$1 \cdot 1.5$	4 -	1.15	', ,		
27.	1-3.5	$12 \cdot 1$	1.3	$18 \cdot 2$	15	1., 1	$1 \because$	$3 \cdot 7$	1.15	' .		
28	$1 \cdot 35$	$12 \cdot 1$	1%	18.2	11	! ${ }^{\text {a }}$	$1 \ldots$	$4 \cdot 2$	$1 \cdot 1.5$	-		
29	$1 \therefore$	$12 \cdot 1$	1%	16.1	17	1: ${ }^{\text {a }}$	$1 \because$	4 2	1.15	\cdots		
30.	1.35	$12 \cdot 1$	$1:$	16.1	1 ;	$12 \cdot 1$	$1 \div$	4 -	1.15	\cdots.		
31.			$1 \cdot 1.5$	16.1			$1 ;$	$\therefore \cdot ;$	1.25	- "		

HEFFERLY CREEK BELOW HEFFERLY LAKE.

Location.-Section 3, township 22, range 16, west 6 th meridian.
Records Available.-June 25 to November 30, 1911; April 1 to September 20, 1912; May 11 to September 19, 1913.

Winter Conditions.- Climatic conditions are somewhat similar to those at Kamloops, except for the fact that owing to the greater altitude of the drainage basin of Hefferly Creek, the winter is slightly longer and the precipitation (rainfall and snowfoll) more excessive.

Gauges.-The flow out of Hefferly lake is arrived at by the summation of flow of Anderson's ditch, Crawshaw's ditch and Hefferly creek below these two diversions which take water from the creek (during the irrigation season) below the lake and above the hydrographic survey gauge. During the coming season the flow out of Hefferly lake will be directly measured. Mr. F. S. Lawrence acts as gauge reader. The three gauges are standard vertical staff gauges.

Channel.-Channel is about 10 to 15 feet in width, gradient is steep, and control good. During extreme high water trouble has been met with owing to backwater from the highway bridge. This was however of very short duration and results were not appreciably effected.

The channel of the Anderson ditch is very gravelly, and there is much loss by seepage.

Discharge Measurements.-Eight well distributed measurements were made on the stream during 1911-12-13.

Accuracy.-Gauge readings were accurate, and conditions excellent at the regular station, but poor conditions existed for current-meter work on the Anderson and Crawshaw ditches. Accuracy on the whole is only fair during the irrigation season, but high during that period when no diversion was being made.

Discharge Measurements of Anderson diversion of Hefferly Creek near Lawrence Ranch, 1913.

Monthly Discharge of Crawshaw Ditch for 1913.

[^16]SESSIONAL PAPER No． $25 f$
Monthly Discharge of Anderson＇s ditch near Lawrence＇s Ranch，L＇pper Station for 1913.

Note．－Total amount of water diverted in $1913=1,151$ acre－feet．

Monthly Discharge of Hefferly Creek below Hefferly Lake for 1913.

	Month．	Dincharge in Second－Feet．			R（N－Off．
		Maximum．	Minimum．	Mean．	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
May		$9 \cdot 2$	$4 \cdot 4$	$6 \cdot 3$	387
June		9－${ }^{\text {² }}$	$5 \cdot 1$	$7 \cdot 05$	419
July ．		$5 \cdot 7$	1.0	$2 \cdot 07$	127
		$23 \cdot 2$	1.1	$10 \cdot 7$	658
September		17.9	（1）．5）	$10 \cdot 5$	625

Note．－The drainage area is not used in this table because there is a diversion above the station．

Monthly Discharge of Hefferly Creek．Total flow below Hefferly Lake for 1913.
（Drainage Area 30 Square Miles．）

	Movily	Discharge in Second－Feet．				IRun－Off．	
		Maximum．	Minimum．	Mean	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area．	Total in acre－feet
May．．．．				11.1	11.37	－ 43	や゙い
June．．．				$16 \cdot 5$	$0 \cdot 55$	－ 61	9？
July ．．．				5．f	0.19	－22	344
August．				15.7	$0 \cdot 52$	－60	（1i3）

Note．－These figures are the sum of the flow in the creek below two diversions and the two diversions themselves and give the actual flow from Hefferly lake．

Daily Gauge Heights and Discharges of Hefferly Creek at Anderson's Ditch for 1913.

Day.	May.		June.		July.		August.		September.	
	Gauge Height.	Discharge	Gauge Height	Discharge						
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft. 1	Feet.	Sec.-ft.
$\frac{1}{2} .$			$1 \cdot 25$ 1.25 1	$\begin{aligned} & 6.5 \\ & 6.5 \end{aligned}$	$\begin{aligned} & 0.75 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 0 \end{aligned}$	1.0	$\begin{aligned} & 3 \cdot 3 \\ & 3 \cdot 0 \end{aligned}$	1.1 1.1	4.3 4.3
3.			1.25	6.5	0.75	1.0	10	$3 \cdot 3$	1.1	$4 \cdot 3$
4			$1 \cdot 35$	6.5	$0 \cdot 75$	1.0	1.05	$3 \cdot 6$	$1 \cdot 15$	5.0
			$1 \cdot 3$				$1 \cdot 05$	$3 \cdot 6$		$5 \cdot 0$
6				$7 \cdot 4$	$0 \cdot 5$	$1 \cdot \underline{2}$	1.05	$3 \cdot 6$	1.1	$4 \cdot 3$
8			1.3 1.3	7	$0 \cdot 9$	${ }_{2}^{1.6}$	$1 \cdot 2$		1.05 1.05	$3 \cdot 6$ $3 \cdot 6$
9.			$1 \cdot 3$	7.4	$0 \cdot 9$	2.0	1.15	$5 \cdot 4$ $5 \cdot 0$ 5.0	$1 \cdot 05$	$3 \cdot 6$ 3.6
10.			$1 \cdot 3$	$7 \cdot 4$	1.0	$\overline{3} \cdot 0$	$1 \cdot 15$	$5 \cdot 0$	$1 \cdot 05$	${ }_{3 \cdot 6}$
11.	$1 \cdot 1$	$4 \cdot 3$	$1 \cdot 3$	$5 \cdot 4$	$0 \cdot 95$	2.5	$1 \cdot 1$	$4 \cdot 3$	1.05	$3 \cdot 6$
		$4 \cdot 3$	$1 \cdot 3$	$7 \cdot 4$	$0 \cdot 9.9$	2.5	$1 \cdot 15$	$5 \cdot 0$	1.05	$3 \cdot 6$
13.	$1 \cdot 1$	$4 \cdot 3$	1.3 1.3	7.4 7.4	${ }^{0.95}$	$2 \cdot 5$	$1 \cdot 1$	$4 \cdot 3$	1.05	3.6 3.6
15.	$1 \cdot 1$	$4 \cdot 3$		$7 \cdot 9$	1.05	$3 \cdot 6$	$1 \cdot 15$	$5 \cdot 0$	1.05	${ }_{3 \cdot 6}$
16.	$1 \cdot 1$	$4 \cdot 3$	1-3.5	8.4	$1 \cdot 0$	$3 \cdot 0$	$1 \cdot 1$	$4 \cdot 3$	1.0	$3 \cdot 0$
17.	1.05	$3 \cdot 6$	$1 \cdot 35$	2.4	1.0	$3 \cdot 0$		$4 \cdot 3$	0.7	0.9
	${ }_{1.1}^{1.05}$	3.6 4.3	${ }_{1}^{1 \cdot 3.3}$	7.4 8.4	1.0 1.0	$3 \cdot 1$ $3 \cdot 11$	1.1	$4 \cdot 3$ 4.3	0.6 0.6	0.8 0.8
20.	$1 \cdot 1$	$4 \cdot 3$	${ }_{1 \cdot 3}^{1 \cdot 3.9}$	$9 \cdot 4$		$3 \cdot 0$	$1 \cdot 1$	4		
21.		$5 \cdot 0$	1.3.5	8.4	1.0	3.0	$1 \cdot 1$	$4 \cdot 3$		
22.	1.2	$5 \cdot 7$	$1 \cdot 35$	$8 \cdot 4$	1.0	$3 \cdot 1)$	$1 \cdot 1$	$4 \cdot 3$		
23.	$1 \cdot 2$	$5 \cdot 7$	$1 \cdot 35$	8.4	1.0	$3 \cdot 1$	$1 \cdot 1$	$4 \cdot 3$		
24.	${ }_{1.25}^{1 \cdot 2}$	$5 \cdot 7$ $6 \cdot 5$	$1 \cdot 3$	7.9	0.95	$\frac{2}{2} \cdot 5$	$1 \cdot 1$	$4 \cdot 3$ 4.3		
26.	1.25	6.5	0.9	2.0		$2 \cdot 6$	1.1	$4 \cdot 3$		
27.		$6 \cdot 1$	0.8	$1 \cdot 2$		$2 \cdot 8$	$1 \cdot 1$	$4 \cdot 3$		
28.	$1 \cdot 2$	$5 \cdot 7$	0.8	1.2	$1 \cdot 0$	$3 \cdot 1$		4.3		
29.	1.25	$6 \cdot 5$		$1 \cdot 1$		$3 \cdot 15$		$4 \cdot 3$		
30.	$1 \cdot 25$	6.5		$1 \cdot 1$	$1 \cdot 1$	$4 \cdot 3$		$4 \cdot 3$		
31.	$1 \cdot 25$	$6 \cdot 5$			1.05	$3 \cdot 6$		$4 \cdot 3$		

SESSIONAL PAPER No. $25 f$
Daily Ciftge Heights And Discharifo of Hefferly Creek at Cpper Station for 1913.

Day.	May:		June.		Julv.		August.		September.	
	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge
	Feet.	Sec.ft.		Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
$\begin{aligned} & 1 \\ & 2 \\ & 3 \\ & \frac{1}{5} \\ & 5 \end{aligned}$			$\begin{aligned} & 1 \cdot 2 \\ & 1 \cdot 3 \\ & 1 \cdot 20 \\ & 1 \cdot 2 \\ & 1 \cdot 25 \end{aligned}$	$\begin{aligned} & 5 . \\ & 9.8 \\ & 9.4 \\ & 5.7 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.15 \\ & 1 \cdot 1.5 \\ & 1 \cdot 1.5 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 3 \\ & \\ & 1 \end{aligned}$	$\begin{aligned} & 1 \quad 1 \cdot i \\ & 1 \cdot 0 \\ & 1 \cdot 0 \end{aligned}$	$\begin{aligned} & 1.8 \\ & \hdashline 1 \\ & 1.8 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.5 \\ & 1.45 \end{aligned}$	$\begin{aligned} & 17.9 \\ & 17.9 \\ & 15.6 \\ & 17.9 \\ & 1.5 \cdot 1 \end{aligned}$
$\begin{array}{r} 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{array}$			$\begin{aligned} & 1 \cdot 3 \\ & 1.3 \\ & 1.3 \\ & 1.2 \end{aligned}$	$\begin{aligned} & -3 \\ & 9 \cdot 0 \cdot \\ & 9 \cdot 2 \\ & 9 \cdot 2 \\ & \hdashline \cdot 7 \end{aligned}$	$\begin{aligned} & 1 \cdot 1 \\ & 1 \cdot 05 \\ & 1 \cdot 0 \\ & 0 \cdot 95 \\ & 11 \cdot 9.4 \end{aligned}$	$\begin{aligned} & 3 \cdot 1 \\ & 2 \cdot 2 \\ & 11 \\ & 1 \cdot 1 \\ & 111 \end{aligned}$	$\begin{array}{ll}1 \\ 1 & 1 . \\ 1 & 1 \\ 1 & \ldots \\ 1 & \ldots\end{array}$	$\begin{array}{r} 1 \cdot 4 \\ 15 \cdot 6 \\ 23.2 \\ 23.6 \\ 17 \cdot 9 \end{array}$	$\begin{aligned} & 1.4 \\ & 1.4 \\ & 1.4 \\ & 1.35 \\ & 1.3 .5 \end{aligned}$	$\begin{aligned} & 13 \cdot 2 \\ & 13 \cdot 2 \\ & 13 \cdot 2 \\ & 11 \cdot 2 \\ & 11 \cdot 2 \end{aligned}$
$\begin{aligned} & 11 . \\ & 12 \\ & 13 \\ & 14 \\ & 15 . \end{aligned}$	$\begin{aligned} & 1 \cdot 25 \\ & 1.2 .5 \\ & 1.5 \\ & 1.25 \\ & 1.25 \end{aligned}$	$\begin{aligned} & 7.1 \\ & 7.4 \\ & 9.2 \\ & -.4 \end{aligned}$	$\begin{aligned} & 1 \cdot 2.5 \\ & 1 \cdot 5 \\ & 1 \cdot 25 \\ & 1 \cdot 2.5 \\ & 1.25 \end{aligned}$		$\begin{aligned} & 1 \cdot 11 \\ & 11 \cdot 4 \\ & 1,4,5 \\ & 1 \cdot 0 \\ & 1 \cdot 0 \end{aligned}$	$\begin{array}{ll} 1 & 4 \\ 1 & 1 \\ 1 & 1 \\ 1 & 1 \\ 1 & 4 \end{array}$	$\begin{array}{ll}1.4 \\ 1.4 \\ 1.4 \\ 1 \\ 1 & 4\end{array}$	$\begin{aligned} & 13.2 \\ & 1.1 .6 \\ & 1, .6 \\ & 13.2 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 1 \cdot 3.3 \\ & 1 \cdot 3 \end{aligned}$	11.2 4.2 4.2 9.2 9.2
$\begin{aligned} & 16 . \\ & 17 \\ & 18 \\ & 19 . \\ & 20 . \end{aligned}$	1.25 1.2 1.2 1.2 $1 \cdot 2$	$\begin{aligned} & 71 \\ & 0 \\ & 5 \\ & 0 \\ & 0 \\ & 7 \\ & 7 \end{aligned}$	$1 \cdot 25$ 1.25 1.2 1.25 $1 \cdot 2$	$\begin{aligned} & 7 . \\ & 5 . \\ & 5 \% \\ & 5 \% \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \\ & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.4 \\ & 1.1 \\ & 1.4 \\ & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 1: \\ & 1 \cdot 3.5 \\ & 1 \cdot 35 \\ & 1 \cdot 3.5 \end{aligned}$	$\begin{aligned} & 13.2 \\ & 12.2 \\ & 11.2 \\ & 11.2 \\ & 11.2 \end{aligned}$	$\begin{aligned} & 1 \cdot 1 \\ & 1 \cdot 0 \\ & 0.4 \\ & 0 \cdot 9 \end{aligned}$	3.1 1.1 11.5 11.5
$\begin{aligned} & 21 . \\ & 22 . \\ & 23 . \\ & 24 . \\ & 25 . \end{aligned}$	$1 \cdot 2$ $1 \cdot 2$ $1 \cdot 1.5$ 1.92 1.2	$\begin{aligned} & 5 \cdot 7 \\ & 5 \cdot 6 \\ & 4.4 \\ & 5 \cdot 7 \\ & 5 \cdot 7 \end{aligned}$	$\begin{aligned} & 1 \cdot 2 \\ & 1 \cdot 25 \\ & 1 \cdot 2 \\ & 1 \cdot 1.5 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 7.4 \\ & 5.7 \\ & 0.1 \\ & 4.4 \end{aligned}$	$\begin{aligned} & 1 \cdot 0 \\ & 1 \cdot 0 \\ & 1 \cdot 0 \\ & 0 \cdot 9.5 \end{aligned}$	$\begin{aligned} & 1 \cdot 4 \\ & 1 . \\ & 1.4 \\ & 1 \cdot 2 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 1.35 \\ & 1.3 \\ & 1 .: 3 \\ & 1.3 \end{aligned}$	$\begin{array}{r} 11 \cdot 2 \\ 4.2 \\ \vdots 2 \\ 3.2 \end{array}$		
$\begin{aligned} & 26 . \\ & 27 \\ & 28 \\ & 10 \\ & 30 \\ & 31 . \end{aligned}$	$1 \cdot 2$ 10. $1 \cdot 2$ $1 \cdot \frac{1}{2}$ $1 \cdot 2.3$	5.7 5.7 5.6 3.7 5.7 3.6 7.4	$\begin{aligned} & 1 \cdot 3 \\ & 1 \cdot 2.5 \\ & 1 \cdot 25 \end{aligned}$	19.2 6.1 6.4 6.8 6.2	$\begin{aligned} & 1 \cdot 1 \\ & 1 \cdot 1 \\ & 1 \cdot 1 \\ & 1 \cdot 05 \\ & 1 \cdot 0 \end{aligned}$	$\begin{aligned} & 9.0 \\ & .0 \\ & 3 \\ & 3.1 \\ & 2.2 \\ & 2.2 \\ & 121 \end{aligned}$	$\begin{aligned} & 1.3 \\ & 1.3 \\ & 1.3 \end{aligned}$	$\begin{array}{r} \because \% \\ 9.2 \\ 9.2 \\ 11.2 \\ 13.4 \\ 15.8 \end{array}$		

Daily Gauge Heights and Discharges of Hefferly Creek at Crawshaw's Ditch for 1913.

INGRAM CREEK NEAR ADELPHI.
Location.-Section 23, township 17, range 13, 3 miles east of Adelphi (Grand Prairie).

Records Aćailable.-April 1, 1911, to October 4, 1911; April 1, 1912, to August 31, 1912; April 1, 1913, to September 16, 1913.

Winter Conditions.-There are generally some severe eold spells, and snowfall is usually light.

Gange.-The gange is a vertical staff gauge and daily readings are taken during the irrigation season by Miss Mildred King.

Discharge Measurements.-The stream is well rated by measurements covering the stream's range (made during 1911-12-13.)

Accuracy.-The gatue readings were accurately made and the general accuracy is high.

INGRAM CREEK.

Ingram creek rises in the Bouleau hills just south of Crand Prairie, at an elevation of about 4,000 feet, and flows into salmon river, in township 17, range 13, west of the fith meridian, 3 miles east of Crand Prairie village, at an elevation of about 1,800 feet. The reeek is about 9 miles long, and drains an area of 25 square miles. The dramage area is a brokenplateau extending southerly from the howl-shaped (irand Prairie to the Bouleau hills, which separate Ingram ereek and

Salmon river from Okanagan divide. Ahout \bar{t} mile from the mouth of Ingram creek there is a meadow, called Homfray's meadow, which could be used as a reservoir in which to store the surplus waters of the May floods. At Homfray's meadow the creek has an abrupt turn from the east, and about a mile from this turn the creek divides into two forks. On the north fork there are two meadows which might be suitable for storage reservoirs. These are Wolf's and Jolnston's meadows. On account of improvements on Wolf's meadow or homestead, Johnston's meadow might be the only site arailable for storage, unless the economic value of the stored water in Homfray's and Wolf's meadow for use in the valuable Grand Prairie lands be considered greater than the said meadows for actual cultivation.

The mean annual precipitation in Grand Prairie and the Ingram Creek drainage is about 12 inches. Irrigation is necessary and the waters of Ingram creek are extremely valuable for irrigation purposes. Some of the water is now used on the Ingram estate and neighbouring lands at the mouth of the stream, but by far the greater proportion of the flood water of May and June run to waste into Salmon river.

There are some six old provincial water records from Ingram creek, the first one dated (1871) being appurtenant to the Ingram estate, and practically controlling the natural flow of the stream during the latter part of the irrigation season.

The run-off of Ingram creek has been studied during the open season of 1911, 1912 and 1913. A station was established a short distance above the mouth and all irrigation diversions. Meter measurements were taken and daily records of gauge heights. The resulting hydrographic data for the periods, April 1 to September 30, 1911, and April 1 to September 1, 1912, are appended. The year 1911 was a dry year throughout nearly the whole dry belt. The maximum discharge of Ingram creek took place on May 17, 1911, and was 52 cubic feet per second (gauge height 1.64 feet.) The minimum flow occurred September 19, and was 0.5 c.f.s., with a gauge height of 0.3 feet. The totalr un-off from April 1 to September 30, was a little over 3,000 acre-feet. The flow prior to April 1, and later than September 30, was very small, being less than 1 c.f.s.

The year 1912, had a much larger run-off. The maximum discharge took place again on May 17, and was 130 c.f.s., with a gauge height of 2.15 feet. The minimum recorded stage was on August 9 , being $3 \cdot 0$ c.f.s. at the gauge height of 0.65 feet. The total run-off from April 1 to September 1, 1912, was 7.000 acre-feet.

The maximum recorded stage for 1913 , of 165 c.f.s. occurred on Xay 16, and the minimum of $5 \cdot 0$ on September 6 .

5 GEORGE V., A. 1915
Monthly Discharge of Ingram Creek near Grand Prairie for 1913.
(Drainage area, 25 square miles.)

Daily Crauge Heights and Discharges of Ingram Creek near Grand Prairie for 1913.

Day.	April.		May.		June.		July.		August.		September.	
	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Dis- charge
	Feet.	Sec.-ft.										
1		$8 \cdot 0$	$1 \cdot 4$	27.5	1.8	$74 \cdot 0$	$1 \cdot 6$	$47 \cdot 0$	1.05	$9 \cdot 5$	0.9	6.0
2		$8 \cdot 0$	$1 \cdot 35$	$24 \cdot 0$	1.7	$60 \cdot 0$	1.5	$36 \cdot 5$	1.0	8.0	$0 \cdot 9$	$6 \cdot 0$
3.		$8 \cdot 0$	$1 \cdot 3$	20.5	$1 \cdot 6$	$47 \cdot 0$	1.5	$36 \cdot 5$	1.0	$8 \cdot 0$	11.9	$6 \cdot 0$
4		$8 \cdot 0$	$1 \cdot 35$	24.0	1.5	$36 \cdot 5$	1.5	36.5	$1 \cdot 1)$	$8 \cdot 0$	$1 \cdot 0$	$8 \cdot 0$
5		$8 \cdot 0$	$1 \cdot 35$	24.0	$1 \cdot 55$	41.5	1.55	41.5	09	60	09	$6 \cdot 0$
6		11.0	1.35	24.0	1.5	$36 \cdot 5$	1.55	41.5	$0 \cdot 9$	6.0	11.9	6.0
7		11.0	$1 \cdot 3$	$20 \cdot 5$	1.5	$36 \cdot 5$	1.5	36.5	0.95	$7 \cdot 0$	11.9	$6 \cdot 0$
8		11.0	1.25	18.0	1.5	36.5	1.45	$32 \cdot 11$	1.0	$8 \cdot 0$	$0 \cdot 85$	$5 \cdot 5$
9.		11.0	1.4	27.5	1.5	36.5	$1 \cdot 4$	27.5	$1 \cdot 0$	$8 \cdot 0$	$0 \cdot 85$	$5 \cdot 5$
10.		$11 \cdot 0$	1.8	74.0	1.4	$27 \cdot 5$	1.4	27.5	$0 \cdot 9$	$6 \cdot 0$	$0 \cdot 9$	$6 \cdot 0$
11.		15.5	$2 \cdot 0$	104.0	1.3	$20 \cdot 5$	1.3	20.5	0.9	$6 \cdot 0$	0.9	$6 \cdot 0$
12.		15.5	$2 \cdot 0$	$104 \cdot 0$	1.8	$74 \cdot 0$	$1 \cdot 4$	27.5	0.9	$6 \cdot 0$	0.9	$6 \cdot 0$
13.		$15 \cdot 5$	$2 \cdot 2$	$135 \cdot 0$	$1 \cdot 85$	\$1.5	$1 \cdot 6$	$47 \cdot 0$	$0 \cdot 9$	$6 \cdot 0$	$0 \cdot 85$	5. 5
14.		15.5	$2 \cdot 25$	142.1)	$1 \cdot 6$	$47 \cdot 0$	1.7	$60 \cdot 0$	0.9	$6 \cdot 0$	0.85	-5.5
15.		15.5	$2 \cdot 4$	$165 \cdot 0$	1.6	$47 \cdot 0$	1.5.5	81.5	11.9	$6 \cdot 0$	$0 \cdot 3$	$5 \cdot 0$
16.	$1 \cdot 3$	$20 \cdot 5$	$2 \cdot 4$	$165 \cdot 0$	$1 \cdot 4$	$27 \cdot 5$	$1 \cdot 55$	41.5	$0 \cdot 9$	6.0	10.4	$5 \cdot 0$
17.	$1 \cdot 3$	20.5	$2 \cdot 3$	$150 \cdot 0$	$1 \cdot 3$	$20 \cdot 5$	$1 \cdot 4$	$27 \cdot 5$	0.95	$7 \cdot 0$		
18.	1.5	36.5	$2 \cdot 25$	$1+2 \cdot 0$	1.4	27.5	1.3	$20 \cdot 5$	$1 \cdot 0$	8.0		
19.	1.6	17.19	$2 \cdot 2$	$135 \cdot 0$	$1 \cdot 4$	$27 \cdot 5$	$1 \cdot 3$	$20 \cdot 5$	1.0	$8 \cdot 0$		
20.	1.5	$36 \cdot 5$	2.2	13.5.1)	$1 \cdot 4$	$27 \cdot 5$	1.2	$15 \cdot 5$	1.0	$8 \cdot 0$		
21	$1 \cdot 6$	$47 \cdot 0$	$1 \cdot 9.5$	$96 \cdot 5$	$1 \cdot 4$	27.5	1.3	20.5	0.8	$5 \cdot 0$		
22	1.5	36.5	1.9.)	96.5	$1 \cdot 3$	$20 \cdot 5$	$1 \cdot 3$	$20 \cdot 5$	0.8	$5 \cdot 0$		
23.	1.4	27.5	$2 \cdot 0$	104.0	1.3	$20 \cdot 5$	$1 \cdot 3$	$20 \cdot 5$	$0 \cdot 9$	(5) 0		
24.	1.4	$27 \cdot 5$	$2 \cdot 1$	$120 \cdot 0$	$1 \cdot 65$	53. 5	1.2	15.5	11.9	6.0		
25.	$1 \cdot 3$	$20 \cdot 5$	$2 \cdot 1$	$120 \cdot 0$	1.7	6.11	$1 \cdot 15$	$13 \cdot 0$	$0 \cdot 9$	$6 \cdot 0$		
26	$1 \cdot 3$	20.5	$2 \cdot 2$	$135 \cdot 0$	$1 \cdot 7$	$60 \cdot 0$	$1 \cdot 1$	11.0	11.1	15.0		
27.	$1 \cdot 25$	$18 \cdot 0$	$2 \cdot 3$	$150 \cdot 0$	$1 \cdot 1 ;$	$47 \cdot 0$	$1 \cdot 1$	$11 \cdot 0$	0.85	$\therefore .5$		
28	$1 \cdot 3$	20.5	$2 \cdot 2$	$135 \cdot 0$	1.5	$36 \cdot 5$	$1 \cdot 2$	$15 \cdot 5$	$0 \cdot 9$	6.0		
29.	1.3	$20 \cdot 5$	$2 \cdot 0$	10.4 ()	1.5	$36 \cdot 5$	1.2	15.5	$0 \cdot 9$	6.0		
30.	$1 \cdot 35$	$24 \cdot 0$	1.1	A9.0	$1 \cdot 6$	47.0	$1 \cdot 1$	11.0	0.9	$6 \cdot 0$		
31.			1.9	s9.0	11		1.11 .5	9.5	0.95	$7 \cdot 0$		

JACKO CREFK.
Location.-Section 5, township 19, range 18, west 6 th meridian.
Records Available.-May 1 to September 30, 1912; May 7 to August 31, 1913.

IV'inter ('omditions.-Stream is usually dry hy the middle of serptember, and commences to flow in April. Light snowfall.

Gauge.-Vertical staff gauge read tri-weekly by Nuir Watson.
Channel.-The bed of the stream is gravelly, and the channel is about 5 feet in width. A maximum flow of 15 second-feet was recorded on May 16, 1912. Discharge Measurements.-Five discharge measurements give a fairly welldefined curve.

Accuracy.-The accuracy of returns is fair and results are thought to be within 10 per cent of true conditions.

?ACKO CREEK.

Jacko creek has its source in the hills 20 miles south of Kamloops, at an elevation of 3,800 feet, and discharges into Jacko lake near Kamloops at an elevation of 2,200 feet. It is part of the Peterson-Thompson drainage. The drainage area, as measured from the Geological Survey map, dated 1895, scale 2 miles to 1 inch, is 13 square miles. Three small unnamed creeks enter from the right, going upstream. Jacko creek is a small but very contentious irrigation stream in the most arid section of the dry belt. The summers are hot and dry, the winters long and cold ($-30^{\circ} \mathrm{F}$.).

Jacko creek, rising in a swamp, descends rapidly for about 6 miles through a densely wooded country, where it flows sluggishly through irrigable land to Jacko lake. The water in Jacko creek is subject to the records on Jacko lake and Peterson creek, of which it is the chief tributary. (See Peterson creek for further information. In 1911 and for the preceding four year*. wo water reached Jacko lake: this fact formed the basis of biter fights in the courts. From ohservations made in 1912, it appears that there is an enormous loss of water due to seepage. With a discharge of $\overline{7}$ socond-feet at the gauging station. there was no more than 2 second-feet lower down, all the irrigation ditches being closed.

The river station on Jacko creek was established above all diversions on May 1, 1912, by H. J. E. Keys. The measuring section is located about 100 feet above the Wation diversion, and 100 yards west of the Kimnlonps-Trout lake road. I standard vertical staff gatuge is located on the right hank at the measuring section. All measurements were made by wading. This is an excellent measuring section; with good control; high banks, uniform current and one permatent channel.

The datum of the gauge is referred to one bench mark.
Discharge Measurements of Jacko Creek, near Kamloops 1911-12-13.

	Date.	Hydrographer.	Meter No.	Whath.	Area of section	11.-1. Velocity	G=1.5	Discharge.
	1911.			Feet.	sq. ft.	Ft. per sec.	Feet.	Sec.ft.
June	8	W. M. Carlyle.	1,044	$2 \cdot 7$	$1:$	0.3.5	1.0	$0 \cdot 5$
	1912.							
May	18.	H. J. E. Keys.	1,057	--u	1. 1	1.17	2.11	$15 \cdot 2$
July			1,057			${ }_{0}^{0.64} 0$	$1 \cdot 12$	$3 \cdot 2$
1913.								
May		do	1,057	4.5	4.2	$1 . .7$	1-1	3.0
Aug.		do	1,057				$0 \cdot 0$	$0 \cdot 11$

Note. -1 New gauge.

Monthly Discharge of Jacko Creek, near Kamloops for 1913.
(Drainage area, 13 square miles.)

Month.		Discharge in Second-Feet.				Run-Off.	
		Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
May		$7 \cdot 0$	2.0	$3 \cdot 3$	$0 \cdot 25$	$0 \cdot 29$	203
June.		$3 \cdot 0$	0.8	1.99	$0 \cdot 15$	$0 \cdot 17$	118
July.		$3 \cdot 0$	$0 \cdot 2$	0.99	0.08	$0 \cdot 09$	61
August		$0 \cdot 2$	$0 \cdot 0$	$0 \cdot 1$	$0 \cdot 01$	$0 \cdot 02$	6

Daily Gauge Heights and Discharges of Jacko Creek above all diversions for 1913.

	May.		June.		July.		August.	
	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charg } \end{gathered}$
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.
1.			8	$3 \cdot 0$	1.8	$3 \cdot 0$		$0 \cdot 2$
3			$1 \cdot 8$	2.5	1.7	$\stackrel{1}{2.0}$		0.1
4			1.7	$2 \cdot 0$		1.6	$0 \cdot 9$	$0 \cdot 1$
5				$2 \cdot 0$	$1 \cdot 6$	$1 \cdot 3$		0.1
6.				$2 \cdot 0$		$1 \cdot 3$	$0 \cdot 6$	$0 \cdot 1$
7	$1 \cdot 7$	${ }_{2}^{2.0}$	1.7	$2 \cdot 0$	$1 \cdot 6$	1.3	$0 \cdot 6$	$0 \cdot 1$
9.	1.8	$3 \cdot 0$	1.7	$2 \cdot 0$	1.5	${ }_{0} \cdot 8$	$0 \cdot 6$	0.1
10	1.9	$4 \cdot 5$		$2 \cdot 0$		$0 \cdot 8$		0.1
11		$5 \cdot 7$	1.7	$2 \cdot 0$		0.8	$0 \cdot 6$	$0 \cdot 1$
12.	$2 \cdot 0$	$7 \cdot 0$		1.8	1.5	0.8		$0 \cdot 1$
13.		$7 \cdot 0$		1.5		$1 \cdot 1$	1.0	0.1
14.	$2 \cdot 0$	7.0	1.6	1.3	$1 \cdot 6$	$1 \cdot 3$		$0 \cdot 1$
15.		5.7		$1 \cdot 3$		$1 \cdot 3$		$0 \cdot 1$
16	1.9	$4 \cdot 5$	$1 \cdot 6$	$1 \cdot 3$	$1 \cdot 6$	$1 \cdot 3$	1.0	0.1
17.		4.5		1.0		1.1		$0 \cdot 2$
18.		4.5	$1 \cdot 5$	$0 \cdot 8$		10.9	$1 \cdot 3$	0.2
19.	$1 \cdot 9$	4.5 3.8		1.0	$1 \cdot 5$	0.8 0.8		${ }_{0.2}$
20.		3.8		1.2		1.8	$1 \cdot 2$	$0 \cdot 2$
21.	1.8	$3 \cdot 0$	$1 \cdot 6$	$1 \cdot 3$	1.5	0.8		0.2
22.		$3 \cdot 0$		$1 \cdot 3$		10.6	$1 \cdot 0$	$0 \cdot 1$
23.		$3 \cdot 0$	1.6	1.3	1.4	(1).4		0.1
24.	1.8	$3 \cdot 0$		$2 \cdot 1$		0.4		0.1
25.		$3 \cdot 8$	1.8	$3 \cdot 0$		0.4	$0 \cdot 8$	0.1
26.	$1 \cdot 9$	$4 \cdot 5$		3.0	$1 \cdot 4$	10.8		$0 \cdot 1$
27.		$3 \cdot 8$		$3 \cdot 1$		11.4	dry	$0 \cdot 0$
28.	1.8	3.0	$1 \cdot 8$	3.10	$1 \cdot 4$	$0 \cdot 4$		
29.		$3 \cdot 1)$		$3 \cdot 1)$		$0 \cdot 3$		
30.	1.8	3.0	1.8	$3 \cdot 1$	1.3	$0 \cdot 2$		
31.		$3 \cdot 1$			$1 \cdot 3$	(1.2		

JAMIESON CREEK.

Location.-Section 21, township 22, range 17, west 6 th meridian.
Records Available.-June 20 to Octoher 30, 1911; April 3 to October 30, 1912; May 6 to October 1, 1913; and numerous float measurements by the courtesy of Arthur E. Meighan, C. E., General Manager British Columbia Fruitlands Company, made during 1907, 1908, and 1909.

SESSIONAL PAPER No. 25 f
Winter Conditions.-Jamieson creek is usually frozen up during December, January, and February, and the run-off in November and Narch is very small.

Gauge.-Vertical staff gauge installed above the diversion of the British Columbia Fruitlands Company. It is read daily he. Eutton during the open period.

Chemel.- Channel is about 30 feet in width, with muddy and rocky bottom. Discharge varies from zero to a maximum of 500 cubic feet at normal high water. Mr. Meighan records a flow of 1,400 second-fent following a cloudburst on May 19, 1907.

Discharge Measurements.-The returns submitted are compiled from a well-defined curve, meterings having been made at all stages of flow.

Accuracy.-The accuracy on the whole is high and results are considered to be well within 10 per cent of actual conditions.

JAMIESON CREEK。

Jamieson creek has its source in the hills north of the Tranquille Forest reserve, outside the Railway Belt, at an elevation of 5.000 feet. It discharges into the North Thompson river from the west, 18 miles north of Kamloops, at an elevation of 1,170 feet. It is part of the North Thompson drainage. The area of the watershed is 66 square miles. The creek is in the dry belt, and the water is used for irrigation. The mean annual precipitation is from 10 to 12 inches. Owing to the influence of the valley of the North Thompson river, the climate is a little cooler than at Kamloops and the snow remains on the ground much longer in the winter.

The water of Jamieson creek is used by the British Columbia Fruitlands Company for the irrigation of their lands along the North Thompson and the main Thompson rivers. The intake is situated about a mile from the mouth of the creek. Water has been used from Jamieson areek for this purpose for a number of years, but a new canal and flume line has recently been constructed by the company to replace the old system. The canal is lined with concrete to prevent seepage. When necessary, galvanized steel fluming has heen used and one inverted syphon of 48 inches diameter has been constructed of wood stave pipe. The main system is about 15 miles long, and will serve some 6,000 acres of the company's land.

The British Columbia Fruitlands Company, have constructed a storage dam on Wentworth lake, near the heat of the creek, but small storage has been secured.

The main station on Jamieson creck is 100 feet above the British Columbia Fruitlands dam, and measures the total flow of the stream. It was established June 20, 1911, and gauge readings were taken till ()ctober :31. 1911. from April 3 to October 31, 1912, and from May 6 to October 1, 1913. The gauge is a 5) foos cedar staff nailed to tree stump on the left hank of the stream, 100 feet above the British C'olumbia Fruithands ('ompany's dam. Its datum is referred to three permanenc bench-marks. The meter measurements were made by wading at a section 25 feet below the gauge. The channel is straight for 25 feet above the section, and the water swift. There is a straight channel for 75 feet below the section, with riffles and then the dam crest. The right bank is a rock cliff 100 feet high. The left bank is 3 feet high and covered with bushes, but is not likely to overflow. There is a gravel bar in the bed itself which at a certain stage divided the ereek inte two hranches near the gather. This oceurs at a gauge height of 3 - 0 for a range of about $0 \cdot 6$ feet. Above that stage the water flows over the bar, and the stream becomes one; below the stage the second stream stops ruming. The gatue is only about 100 beet above the dam, and although there is ronsiderable fall in that distanee the engineer
$25 \mathrm{~F}-16 \frac{1}{2}$
should note particularly each trip that no change has been made at the dam to affect the height of the water at the gauge, and that there are still riffles between the gauge and the dam.

A second station was established below the dam to show the amount of unused water and to give some idea of the water diverted by the British Columbia Fruitlands ditch. It was found, however, that there was considerable loss by seepage from the stream into the gravel beds between the two stations. Hence the amount of unused water is larger than the figures given by lower station; the amount of water diverted cannot be found by comparing the surface flow at the two stations. Gauge readings were taken at the lower station, from June 22, 1911, when the station was established, to October 30, 1911; and from April 3 to July 12, 1912. The gauge readings at this station will not be continued another season.

Discharge Measurements of Jamieson's creek near Upper station, 1911-1913.

	Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
	1911.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.ft.
June	20.	C. G. Cline.	1,046 1,046	24 19	27.6 13.2	$2 \cdot 21$ 0.64	2.35 1.78	61.10 8.43
Oct.		C. K. Smith..	1,046	20	15.0	0.51	1.82	7.66
	1912.							
$\begin{aligned} & \text { June } \\ & \text { July } \end{aligned}$	21.	$\begin{aligned} & \text { H. J. E. Keys } \\ & \text { do } \end{aligned}$	$\begin{aligned} & 1,046 \\ & 1,057 \end{aligned}$	23	$\begin{aligned} & 14 \cdot 5 \\ & 31 \cdot 1 \end{aligned}$	$1 \cdot 77$	$\begin{gathered} 2 \cdot 30 \\ 2.33 \end{gathered}$	$\begin{array}{r} 157.50 \\ 55.70 \end{array}$
1913.								
June July	$\begin{aligned} & 11 \ldots \ldots \\ & 16 \ldots \ldots \end{aligned}$	dodo	$\begin{aligned} & 1,057 \\ & 1,057 \end{aligned}$	$\begin{aligned} & 26 \\ & 31 \end{aligned}$	$\begin{aligned} & 26 \cdot 2 \\ & 57 \cdot 1 \end{aligned}$	$\begin{aligned} & 3 \cdot 50 \\ & 2 \cdot 80 \end{aligned}$	$\begin{aligned} & 2 \cdot 65 \\ & 2.88 \end{aligned}$	$\begin{array}{r} 2103.00 \\ 167.00 \end{array}$

Note. - Sum of diversions and discharge at Lower station.
${ }^{2}$ Different section.

Monthly Discharge of Jamieson Creek near Black Pine P. O. for 1913.
(Drainage area, 66 square miles.)

SESSIONAL PAPER No. $25 f$
Daily Gafge Heights and Discharies of Jamieson Creek, near Black Pine, P. O., for 1913.

LOUIS CREEK AT NORTH BOUNDARY OF RAILWAY BELT.
Location.-Section 33, township 23, range 15, west 6th meridian at Leslie's ranch.

Records Available.-July 16, to October 31, 1911; April 1 to November 16, 1912; May 1 to October 14, 1913.

Winter Conditions.-Not very severe, but with occasionally heavy snowfall. Open conditions often exist throughout the year.

Gauge.-Standard vertical staff gauge read daily during 1911 and 1912 and tri-weekly during 1913.

Channel. - The width of the stream varies from 25 to 35 feet, the control is good and the station on the whole excellent.

Accuracy-Gauge readings were carefully made and the accuracy of returns is fairly high (within 10 per cent.)

LOUIS CREFEK.

Louis creek has its source in the Niskonlith creek divide township 21, range 14, west 6th Meridian, at an elevation of 3,100 feet, and discharges into the North Thompson, 36 miles north of Kamloops from the east, at an elevation of 1,160 feet. It is part of the Thompson drainage; the drainage area, as measured from the Geological Survey map, dated 1895, scale 2 miles to 1 inch, is 180 square
miles. Of this area, 100 square miles is above the river station. Louis creek has a small industrial water-power, and is used a little for irrigation purposes near the mouth in the North Thompson valley. The ranchers in the Louis Creek valley don't require any irrigation except in very dry years, as the stream is almost entirely outside the dry belt. It is probable that the mean annual precipitation is from 15 to 25 inches. The valley is bounded by high precipitous mountains; heavily timbered, whose snow feeds the creek as well as its tributaries Fadear, Cahilty, and McGillivary creeks, entering from the east and Christian creek from the west near the headwaters. There is a small sawmill at the mouth operated by power from the creck, and similar industrial powers would be possible on the lower 5 miles of the stream, where the stream falls rapidly, in contrast to its sluggishness in its upper 20 miles. The tributaries of Louis creek also have good power possibilities and should a market arise, would warrant a thorough investigation.

The river station on Louis creek was established on Ausust 16, 1911, by C. G. C'line. It is located at a bridge on the Leslie ranch, 2 miles south of the Railway Belt boundary, and about 12 miles from the mouth. The purpose of this location was to determine the amount of Louis creek water rising in the Railway Belt. A standard vertical staff gauge, 7 feet long, is located on the right bank a0 feet above the aforementioned bridge, and its datum referred to three benchmarks. The measuring section is at the bridge; in low water the measurements are made by wading, in high water by means of a cable from the bridge. This is a good section, the control is fair, the current uniform, the banks high, and one permanent channel.

Louis Creek-Undersnot Wheel and Sawmill.

SESSIONAL PAPER No. 25 f

Discharge Meastrements of Louis (reek. at Leslie's Ranch, 1911-12, 1913.

	Date.	Hydrographer.	Meter No.	Width.	Area of section.	$\begin{gathered} \text { Mean } \\ \text { Veloclt? } \end{gathered}$	Gauge Height.	Discharge.
				Feet.	$\therefore \mathrm{Aq}$-ft.	Ft. per sec.	Feet.	Sec.-ft.
Aug.	16-12.	C. G. Cline.	1,046	25	$\therefore+$	$0 \cdot 80$	0.91	25
Sept.	11-11.	do ...	1,114;	26	36.8	11.96	0.95	$35 \cdot 4$
Apr.	30-12.	Cline it I ann	1,046	26	49.4	1.7	1.50	94
May	16-12.	E. M. Dann.	1.044	31	$108 \cdot 2$	$4 \cdot 11$	$3 \cdot 80$	439
May	29-12.	do	1.044	28	96	$3 \cdot 6$	$3 \cdot 20$	328
June	8-12.	dn	1,044	28	5	$\because 4$	$2 \cdot 72$	276
June	9-12.	do	1,044	28	35	$3 \cdot 4$	2.81	208
Aug.	22-12.	H.J.F. Fevs	1,057	30	19	$2 \cdot \lambda$	1.02	521
June	28-13.	do	1,057	33	\therefore	$2 \cdot 65$	$2 \cdot 111$	155

Note- - Different M. Section.

Monthly Discharge of Louis Creek at Leslie's Ranch, for 1913.
(Drainage area, 100 square miles.)

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Louis Creek at Leslie's Ranch, for 1913.

SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of Louis Creek at Leslie's Ranch for 1913-Concluded.

	July.		August.		September.		October.	
	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge.	Caum Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	1.47	151	1.1		0.8	40		
2	$1 \cdot 85$	137	$1 \cdot 05$	$\therefore 1$		42		
3.	1.85	137		51		44	$0 \cdot 8$	40
\pm	1.7	117	$1 \cdot 1$.	61		46		
i	1.6	105		60	\cdots	48		
6	1 i	94		\therefore		47	$0 \cdot 75$	38
$\overline{7}$!	100		56		46		
8.	1.5	94	$1 \cdot 0.5$	54	114	45		
9	$1 \cdot 4$	S		I2		4		
10.	1.4	-1		50		43	11.5	40
11	1.5	$\because 1$	$0 \cdot 9.5$	15		$4 \div$		
12.	1.5	1.1		40	11.	$1:$		
13	1.7	14		49		41	$1 \cdot 15$	61
14	$1 \cdot 4.5$	151		49		4.		
15.	$2 \cdot 05$	165	$1 \cdot 0$	\therefore	0.85	1:3		
16	$2 \cdot 11$	1,		55		43		
17		141		fiil		43		
1		124	12	65		43		
19		107		1if	$0 \cdot 85$! ${ }^{\text {a }}$		
$\because 1$	1.45	(1)		(i.i)		43		. . .
21	1.4	84		62		43		
22.	1.4	84	$1 \cdot 15$! 1	11.9	$1:$		
\because	$1 \cdot 3$	74		I7		$4{ }^{11}$		
$2!$	$1 \cdot 15$	61		53		11		
2.		61	0.95	1,		41	
2ir		1,1		48	0.75	35		
27		61		1,		35		
\therefore	$1 \cdot 1 . i$	11		is		3)		
24	$1 \cdot 1$	57	0.95	-	17	33		
: ${ }^{1}$		35		45		3.		
$\because 1$		5		42				

MONTE CREEK (ABOVE BOSTOCK'S DIVERSION.)
Location. -Section 25, township 19, range 15, west 6th meridian.
Records Available.-NIay 20 to June 30, 1911; August 8, 1911; April 8, 1911; to September 7, 1912; April 16 to September 13, 1913.
 cember, January, and February, while the flow is very small during October and November. Snowfall is light though there are sometimes short periods of severe rold durine the winter.

Gauge.-Standard vertical staff gauge read semi-weekly by 'T. F' Teagle during the irrigation season.

Channel.-The channel is about 15 feet in width and the bed rocky. The flow varies from zero to 100 cubic feet per second during high freshet; 117 cubic feet per second is the highest flow recorded, which occurred on Xay 18, 1912.

Discharge Measurements.-The gauge-height discharge curve is well defined. Accuracy. - Accuracy of results submitted is high.

MON゙TE CREFFK。

Nonte creck is a stream about 20 miles long rising in Monte hills, 5 miles west of Grand Prairie, at an elevation of 4,000 feet and, flowing northerly, discharges into the South Thompson river at Ducks, B.C. It is a stream about 6 feet wide and from 1 foot to 2 feet deep, with a mean velocity of from 4 to 5 feet per second. This stream flows through an agricultural district in the dry
belt and is a very contentious irrigation stream. Senator Bostock, a large land owner in this vicinity, irrigates hundreds of acres of land in the Monte Creek Talley, and also bench and bottom lands in the Thompson river valley near the mouth of the creek. Records on this creek are held to divert water from Monte creek at a point about 15 miles from the mouth, Summit lake, where it is stored and used when required on lands near Grand Prairie in the Salmon river drainage area. In 1912 there was plenty of water for all concerned, but in previous years considerable trouble arose, due to the scarcity of water. There is a small storage reservoir near the source of Monte creek, with a capacity of 2,000 acrefeet.

The precipitation is about 12 inches throughout the valley, of which about 4 inches is snow. The winters are short and cold and the summers hot and dry. The creek freezes up during the months of December, January, and February.

Regular gauging stations were established on Monte (reek: (1) Above Bostocks diversion, (2) below diversions to Summit lake, (3) diversions to Summit lake.

The station on Monte creek above Bostock's diversion was established on May 20, 1911, by ('. E. Richardson. The measuring section is located 300 yards above the Bostock headgate, $1 \frac{1}{2}$ miles from Ducks, and 100 yards from the wagon road from Ducks to Grand Prairie.

The gauge is a standard vertical staff near the measuring section on the right bank of the stream. Measurements were made by wading with Price electric current meter. The channel above and below the station is straight for 50 ft ., the water is fairly fast. The right bank is steep for 15 feet to the wagon road. The left bank is low and heavily timbered, but there is no change of overflow. The bed of the stream is silt at the measuring section and gravel at the gauge. 'There is only one channel and its depth is from 1' to 3 '. Three bench marks were established and referred to the gauge datum.

The station on Monte (reek below the diversion to Summit lake was estab)lised on May 25, 1911, by C. E. Richardson. The measuring section is 100 yards below the diversion near T. Graham's and $\frac{1}{2}$ mile west of the Cirand PrairieMonte creek wagon road, 6 miles from Grand Prairie. The gatuge is a vertical staff $4^{\prime \prime} \times 1 \frac{1}{2}^{\prime \prime} \times 4^{\prime}$. (cedar) marked in feet and tenths from 3^{\prime} to $7 .^{\prime} 7$ fastened to the right bank of the stream 100 yds . below the diversion. Measurements are made with Price electric current meter and wading equipment. The chamel above and below the station is straight for 100 feet and the water flows with a uniform velocity. The banks are steep and high and sparsely timbered. The bed of the stream is gravelly; there is only one channel with a depth of from $6^{\prime \prime}$ to $2.5^{\prime \prime}$. Three bench marks were established and referred to the gauge datum.

Discharge Meastraments of Monte (reek above Bostock's diversion, 1913.

	Date.	Hydrosrapher.	Vheter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge
1913.			Feet.	Sq.-ft.	Ft. per sec.	Feet.	Sec.-ft.	
Apr.		H. J. E. Keys.	1057	$13 \cdot 0$	12.9	1.3	1.3.	1-i
June		do	10.57	$14 \cdot 0$	$8 \cdot 1$	$1 \cdot 1$	$1 \cdot 23$	11.11

[^17]Gauge Reader-'T. F'. Teagle

SESSIONAL PAPER No. $25 f$
Monthly Discharge of Monte Creek above Bostock's diversion for 1913.
(Drainage area, 110 square miles.)

Moxth.	Discharge in Second-Feet.				Rex-Off.	
	Maximum.	Minimum.	Mean.	Per square 14.14.	Depth in inches on Drainage area.	Total in acre-feet.
May June July August	41 41 7.9 2.7	11 11 $2 \cdot 3$ $1 \cdot \cdots$	30 10.1 +1.3 20.3	$\begin{array}{r} .27 \\ .16 \\ \cdot 04 \\ .02 \end{array}$.31 .18 .05 .02	1.4 .7 1,077 258 141

Jote.-The flow through the diversion into Summit lake has not been included in above.-

Daily Gauge Heights and Discharges of Monte Creek, above Bostock's diversion for 1913.

Monte (ReEK below summit lake Diversion.)
Location.-Section 22, township 18, range 14, west 6 th meridian.
Records available.-May 25 to September 30, 1911; April 1 to September 17, 1912; June 20 to September 30, 1913.

Winter conditions.-Stream is usually frozen during winter months and, as a rule, there is no run-off during December, January, and February.

Gauge.-Vertical staff gauge with daily readings taken by Cecil Russell.
Channel.-Width of channel varies from 3 to 15 feet, the stream bed being gravelly. The flow varies from zero to 100 second-feet.

Discharge Measurements.-The gauge-height discharge curve is well defined by twelve meterings, most of which however were made at low medium stages.

Accuracy. - The accuracy of returns is high, but another meter measurement should be secured at a high stage during 1914.

Discharge Measurements of Monte Creek below Diversion Summit Lake.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1911			Feet.	Sq.ft.	Ft. per sec.	Feet.	Sec.-ft.
June 15	W. M. Carlyle.	1,044	13.2	$9 \cdot 6$	$0 \cdot 5$	4.07	$4 \cdot 7$
July 10	do	1,044	$14 \cdot 0$	12.7	$0 \cdot 7$	$4 \cdot 20$	$9 \cdot 1$
July 24	do	1,044	$13 \cdot 0$	$7 \cdot 4$	$0 \cdot 3$	$4 \cdot 00$	$2 \cdot 4$
Aug. 18	do	1,044	$3 \cdot 5$	$1 \cdot 3$	$0 \cdot 5$	$3 \cdot 83$	$0 \cdot 6$
1912							
May 11	C. E. Richardson	1,048	$15 \cdot 0$	$24 \cdot 7$	$3 \cdot 0$	$4 \cdot 70$	$73 \cdot 3$
July 15	do	1,048	$13 \cdot 0$	$9 \cdot 1$	$0 \cdot 5$	$3 \cdot 98$	$4 \cdot 9$
July 17	do	1,048	$12 \cdot 0$	$7 \cdot 3$	$0 \cdot 4$	$3 \cdot 93$	$2 \cdot 9$
Aug. 27.	do	1,048	$13 \cdot 0$	$4 \cdot 2$	$0 \cdot 4$	3•74	$1 \cdot 6$
1913							
April 24	H.J.E.Keys..	1,057	$14 \cdot 0$	$13 \cdot 2$	0.8	$4 \cdot 17$	$11 \cdot 1)$
June 20	do	1,0.97	$14 \cdot 0$	11.9	$1 \cdot 1$	$4 \cdot 18$	$12 \cdot 8$
Sept. 19	do	1,057	$6 \cdot 0$	$\because \cdot 4$	0.8	$3 \cdot 80$	$1 \cdot 9^{1}$

Note.-1Different section.

Monthly Discharge of Monte Creek below Diversion Summit Lake for 1913.

Daily Gauge Heights and Discharge of Monte Creek below Summit Lake Diversion for 1913.

MONTE CREEK DIVERSION TO SUMMIT LAKE.
Location.-Section 15, township 18, range 14, west 6th meridian.
Records Available.-May 25 to October 2, 1911; June 20 to September, 30, 1913.

Gauge.-Vertical staff gauge read daily during the irrigation season by C. Russell.

Channel.-The channel is about 10 feet in width, having a gravelly bed.

Discharge Measurements.-The new gauge established in 1913 has not yet been well rated, being defined by only three meterings.

Accuracy.-The accuracy is fair for discharges up to 12 second-feet. The deductions made for greater flow will be ratified during 1914 if possible.

MONTE CREFK DIVERSION 'TO SUMMII IAKE。

The diversion is about half a mile long and the water flows into the north end of Summit lake. The headgate on Monte creek is about 12 miles from the mouth, and 100 yards above the hydromanhio -tation called Monte (reek at Grahams ranch.

The gauge was established at the headgate. The water is changed from one channel to the other by moving logs and rocks. So every time the water is changed the gatuging seetion is chamed. In 1911 m changes were made, but
owing to the continual changing in 1912 no daily discharges were obtained. A new station was established and rated in 1913, and daily readings were obtained from May 20 to September 30.

Discharge Measurements of Monte Creek Diversion to Summit Lake, 1913.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1911			Feet.	Sq. ft .	Ft. per sec.	Feet.	Sec.-ft.
May 25	W. M. Carlyle.	1,044	$4 \cdot 7$	$10 \cdot 2$	$3 \cdot 2$	1-15	$32 \cdot 7$
June 15.	do	1,044	$13 \cdot 6$	$6 \cdot 0$	1.5	$0 \cdot 58$	8.8
July 10.	do	1,044	$13 \cdot 5$	$4 \cdot 6$	$1 \cdot 1$	$0 \cdot 39$	$5 \cdot 0$
July 24.	do	1,044	$6 \cdot 0$ $2 \cdot 0$	2.4 0.6	0.4 0.4	$0 \cdot 1$	0.9
Aug. 18.	do	1,044	$2 \cdot 0$	$0 \cdot 6$	$0 \cdot 4$	$0 \cdot 03$	$0 \cdot 2$
1912							
May 11	C. E. Richardson.	1,048	$9 \cdot 0$	$7 \cdot 0$	$1 \cdot 6$	$0 \cdot 6$	$10 \cdot 8$
July 15	do	1,048	$4 \cdot 0$	1.6	$1 \cdot 2$	$0 \cdot 34$	1.9
July 17.	do	1,048	$5 \cdot 0$	1.5	1.2	$0 \cdot 32$	1.7
Aug. 27.	do	1,049	$3 \cdot 0$	$0 \cdot 7$	$0 \cdot 6$	$0 \cdot 18$	$0 \cdot 4$

Monthly Discharge of Monte Creek Diversion to Summit Lake, for 1913.

	Month.	Discharge in Second-Feet.			Run-Off.
		Maximum.	Minimum.	Mean.	Total in acre-feet.
July		21.4	8.7	12.8	790
August.		8.7	1.3	$3 \cdot 4$	210
September.		$2 \cdot 7$	$0 \cdot 3$	$1 \cdot 0$	60

SESSIONAL PAPER No. $25 f$
Daily Cauge Heights and Discharges of Monte Creek Diversion to summit Lake for 1913.

Day.	April.		May.		June.		July.		August.		September.	
	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discheren	Gauge Height	Discharge	Ciauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft
1							1.1.5	$\because 1.1$	11.7	$6 \cdot 1$	1). 4	1.3
3							1.0	1.76	11.7	6. ${ }_{8} 1$	$0 \cdot 4$	$1 . ?$
4							$1 \cdot 1$	$15 \cdot 6$	11.5	S.7	(1).52	2.7
5							$1 \cdot 0$	$15 \cdot 6$	$0 \cdot 6$	$4 \cdot 0$	10.5	$2 \cdot 4$
¢							$1 \cdot 1)$	$15 \cdot 6$	11.6	$4 \cdot 11$	$0 \cdot 45$	1.5
7							0.9	12.11	11.1	$4 \cdot 0$	$0 \cdot 4$	$1 \cdot 3$
8							0.9	$1 \because \cdot 11$	11. ${ }^{\text {P }}$	$4 \cdot 0$	$0 \cdot 4$	1.3
9							$1 \cdot 0$	1.5 . ${ }^{\text {d }}$	$0 \cdot 6$	$4 \cdot 11$	(1.4	$1 \cdot 3$
1)							11.9	$12 \cdot 0$	11. $\mathrm{i}^{\text {i }}$	$4 \cdot 11$	0.4	$1 \cdot 3$
11.							$0 \cdot 9$	$12 \cdot 0$	11.5 .5	$3 \cdot 1$	1.4	$1 \cdot 3$
12							$1 \cdot 11$	$1 . \% 6$	11. 3.5	$3 \cdot 1$	(1).3.3	$1 \cdot 0$
13							$1 \cdot 1$	19.4	11.55	$3 \cdot 1$	$0 \cdot 35$	1.0
14							1.1	11.4	11.5.)	$3 \cdot 1$	$0 \cdot 35$	1.0 0.8
15.							$1 \cdot 1$	$1!1 \cdot 4$	$0 \cdot 55$	$3 \cdot 1$	1).32	0.8
16							$1 \cdot 0$	1.56	11. 5	$2 \cdot 4$	11.3	0.7
17							1.11	$1.5 \cdot 6$	0.5	$2 \cdot 4$	11.3	0.7
15							11.9	$12 \cdot 0$	$0 \cdot 6$	$4 \cdot 0$	0. 3	0.7
19.							0.9	$12 \cdot 0$	$0 \cdot 6$	$4 \cdot 0$	0.3 0.3	0.7 0.7
20.					$0 \cdot 81$	$9 \cdot 2$	0.8	A.7	$0 \cdot 55$	$3 \cdot 1$	0. 3	0.7
21	$0 \cdot 90$	$12 \cdot 0$					$0 \cdot 5$	4.7	11.5	$2 \cdot 4$	11.3	0.7
22					0.9	$12 \cdot 0$	0.8	$8 \cdot 7$	$0 \cdot 5$	$2 \cdot 4$	$0 \cdot 3$	0.7
23.					11.9	$12 \cdot 0$	0.8	$8 \cdot 7$	0.5	$2 \cdot 4$	10.3	0.7 0.7
24.					0.8	8.7	0.8	4.7	0.5	2.4 2.4	11.3 0.25	$0 \cdot 7$ 0.5
20.					0.9	$12 \cdot 0$	10.6	8.6	1.0			
26.					$1 \cdot 0$	$15 \cdot 6$	0.8	- 7	0.45	1.4	0.25	0.5
27.					$1 \cdot 1$	19.4	11.5	$8 \cdot 7$	$0 \cdot 45$	$1 \cdot 6$	$0 \cdot 2$	$0 \cdot 3$
28					$1 \cdot 2$	23.4	0.8	$8 \cdot 7$	$0 \cdot 4$	$1 \cdot 3$	$0 \cdot 2$	$0 \cdot 3$
29					1.2	23.4	0.8	5.7	$0 \cdot 4$	$1 \cdot 3$	(). 2	$0 \cdot 3$
30.					$1 \cdot 2$	23.4	11.8	$8 \cdot 7$	$0 \cdot 4$	$1 \cdot 3$	$0 \cdot 2$	$0 \cdot 3$
31.							0.8	8.7	11.4	$1 \because$...

NAHATLATCH RIVER (LOWER).

Location.-Section 7, township 2, range 26, west 6th meridian.
Records Available. February 27, 1912, to December 31, 1913; January 1, 1913, to December 31, 1913.

Winter Conditions.-Open conditions exist throughout the winter.
Gauge.-Standard vertical staff gauge read weekly by C. Nicholson.
Channel.-There are rapids above and below the gauging section, where the current is slow and the water deep. The bed of the stream contains large boulders.

Discharge Veasurements.-The gauge-height-discharge curve is well defined up to a discharge of 4,600 seeond-feet. Above this point it was necessary to project the curve during the freshet of 1913. An attempt will be made to have the deductions ratified during the coming season.

Accuracy.-The accuracy is high except for the period mentioned.

NAHATLATCH RIVER.

Nahatlatch river rises in the mountains north of Harrison lake outside the Railway belt, at an elevation of about 600 foet, and discharges into Fraser river at an elevation of 360 feet. It is part of the Fraser drainage. Douglas creek flows into the Nahatlateh from the south, and Low ereek from the north. These two streams are close together, and only a short distance below the lakes.

The drainage area of the Nahatlatch at the upper measuring section, which is above the two tributaries, is 300 square miles; and the area above the mouth of the stream is 400 square miles. One very small tributary creek is used for irrigation, but the water of the main stream is not used in any way at present. The stream, however, has a good site for the development of water-power.

The upper part of the watershed of the Nahatlatch is rough and mountainous, with some peaks on which the snow remains until the fall. The country is timbered and some of the timber is very good. Near the lakes the valley is quite wide and for several miles above the lake the river flows quite slowly and sometimes overflows its banks and floods the hay meadows at the head of the lakes. The lakes themselves are at an elevation of 900 feet. There are four lakes in all, three of them being at practically the same elevation while the last is from 15 to 20 feet below. The three upper lakes are together seven miles long, while the lower is about half a mile, with half a mile of rapids between. The width varies from one quarter of a mile to a mile. The hills rise quite steeply from the water's edge except at the mouth of two or three creeks where there are deltas. Snow slides are quite frequent, and it is very hard to keep a trail open along the lakes. The lake is quite deep in most parts. There is good fishing in the lakes and in the rivers.

Below the lakes the river is a series of rapids, falling 50 feet in 8 miles. It is for this reason that no attempt has been made to run $\log s$ in the river. But with this fall it would be quite possible to develop a large amount of power. The lakes would provide the necessary storage. The great drawback to the scheme is the necessity for about seven miles of flume and pipeline necessitating a large expense for construction and considerable attention during operation to prevent damage from slides and falling timber. Probably as much as 30,000 horse power could be developed if desired.

There is some land being cultivated near the mouth of the Nahatlatch river. Fruit seems to do fairly well there. There is one home-steader about 4 miles up the valley, and there is no one beyond him. A few years ago, part of the hay meadow at the head of the lakes was taken up as a homestead. But a big log jam in the river caused the flooding of the meadows, and the house was washed away. Since that time no attempt has been made to cultivate that land. The use of the lakes for storage for power purposes will mean that this land will be flooded, and it is merely a matter of deciding which will be of greater value.

Gauging stations were established at two places on the Nahatlatch. One is at the outlet of the lakes and gives the flow from them. The other is two miles below the lakes and gives the total flow of the stream including the two tributaries, Douglas creek and Log creek which enter about half a mile below the lakes. The river is very rapid and the bed thickly strewn with large boulders, but by carefully choosing the section, hasting out some of the worst boulders and putting up cables and cars, two fairly good metering stations were obtained. Part of this work was done hy engineers of the Canadian Pacific Rallway Company who were investigating the power posibilities of the stream. Gauges were established and are being read he (has. Nicholson, a prospector, who is the only person living in the Nahatlatch valley. He is 4 miles from the farthest gatuge and makes the trip once a week. The stations were established on Fehruary 26, 1912, and weekly gauge readings have been taken at both stations continuously since that date.

The upper station is 8 miles west of Fiefers station, and 200 yards east of the lowest of the Nathatlatch lakes. There is a chaingauge of No. 12 steel Jack chain with a 6 pound sash weight. The chain runs over a pulley on the end of a log, supported against two trees, and overhanging the stream. It is referred to three permanent bench-marks. For the meter measurements there is a half-inch steel cable stretched across the stream and supported by trees

SESSIONAL PAPER No. 25 f

${ }^{0}$ n each bank. A substantial car is suspended from the cable by means of two heary snatch blocks. The engineer can thus place himself directly orer any part of the section and take measurements with a meter suspended by its cable. The channel above the station is straight for 100 foet with the water flowing smoothly. About 400 feet above the section there are rapids when the water leaves the lake. Below the section the chamel is straight for 100 feet and then the rapids commence again. The right bank is 100 feet high with a steep slope. The left bank is 50 feet high, with a fairly steep slope, and with bushes and trees above the high-water mark. The bed of the stream is covered with rocks and boulders and these make it rather difficult to get accurate measurements. There is only one channel, about 4 feet deep at low water.

Discharge Measurements of Ňahatlatch River near Lower station, 1913.

Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
$\begin{aligned} & \text { June } 26 . . \\ & \text { July } 4 \ldots \\ & \text { Sept. } 21 . . \end{aligned}$	('hi-holm d Cline K. G. Chisholm. do	$\begin{aligned} & 1,044 \\ & 1,055 \\ & 1,055 \end{aligned}$	$\begin{aligned} & 9.5 \\ & 93 \\ & 93 \end{aligned}$	$\begin{aligned} & 747 \\ & 627 \\ & 431 \end{aligned}$	$\begin{aligned} & 6.47 \\ & 3.114 \\ & 2.96 \end{aligned}$	$\begin{aligned} & 6 \cdot 4 \\ & 4 \cdot 9.9 \\ & 2 \cdot 6.3 \end{aligned}$	$\begin{aligned} & 4,610 \\ & 3,196 \\ & 1,273 \end{aligned}$
1912							
July 23. Nov. 28.	C. G. Cline do					3.75 2.20	$\begin{array}{r} 1,920 \\ 891 \end{array}$

Monthly Discharge of Nahatlatch River near Lower Station for 1913.
(Drainage area, 400 square miles.)

Month.	Discharge in Second-Feet.				Rに-Ofr.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
January	370	281	325	$0 \cdot 82$	0.95	20,168
Februars	410	230	295	(1).7	0.77	16,550
March..	295	240	275	$0 \cdot 69$	0.79	16,900
April.	1,680	271	914	228	2.51	54,387
May.	6,148	730	3,149	$7 \cdot 57$	$9 \cdot 07$	193,700
June.	6,350	4,100	5,074	12.68	$14 \cdot 15$	302,000
July.	4,520	3,022	3,661	3. 15	$10 \cdot 55$	225,000
Augu-t	3,086	1,525	2,083	5.21	$6 \cdot 01$	127,900
September..	2,880	830	1,732	$+33$	$4 \cdot 83$	103,000
) cetoher....	2,927	841	1,466	$3 \cdot 66$	$4 \cdot 22$	90,000
November.	1,140	685	5.8	222	2.48	52,780
December.	85.5	450	578	144	$1 \cdot 66$	35,540
Year	6,350	230	1,704	$\therefore 109$	$58 \cdot 02$	1,237,934

Daily Gauge Heights and Discharges of Nahatlatch River, near Lower Station for 1913.

Dar.	January.		February.		March.		Apri].		May.		June.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.ft.
1.		370		273		247		271		937	$8 \cdot 00$	6,350
2		370	-65	265	- 55	240		273		568		6,310
4	$1 \cdot 0$	370		255		252		277	1.90	730		6,270
5		365		250		258		279		1,092		6,192
6		360		245		264	- 70	280		1,454		6,153
7		355		240		269		344		1,816		6,114
8		349		235		274		408		2,178	$7 \cdot 75$	6,075
9		343	. 50	230	. 70	280		472		2,540		5,852
10.		337		256		282		536		2,902		5,630
11.		331		282		284		600	$5 \cdot 10$	3,265		5,408
12.	. 85	325		308		286		665		3,118		5,186
13.		322		334		288	1.90	730		2,970		4,964
14		320		359		290		865		2,822		4,742
15.		318		384		292		1,000		2,674	$6 \cdot 30$	4,520
16.		316	$1 \cdot 10$	410	. 75	295		1,136		2,526		4,460
17.		314		394		293		1,272		2,378		4,400
18.		312		378		291		1,408	$4 \cdot 00$	2,230		4,340
19.	- 80	310		368		289		1,544		2,617		4,280
20.		312		346		287	$3 \cdot 35$	1,680		3,004		4,220
21		314		329		285		1,613		3,391		4,160
22		316		312		282		1,546		3,778	5.9	4,100
23.		318	. 75	295	- 70	280		1,479		4,165		4,178
24.		320		287		277		1,412		4,552		4,257
25.		322		279		274		1,346	$6 \cdot 70$	4,940		4,336
26.	. 85	325		271		272	2.80	1,250		5,141	$6 \cdot 20$	4,416
27.		316		263		270		1,212		5,342		4,625
28		307		255		268		1,144		5,543		4,835
29.		298			- 65	265		1,075		5,744	$6 \cdot 80$	5,045
30.		289				267		1,006		5,946		4,669
31.		281				269				6,148		

SESSIONAL PAPER No. 25 f
Daily Gauge Heights and Discharges of Nahatlateh River, near Lower Station for 1913.-Continued

1) AY.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge	Gauge Height.	Discharge	Crauge Height	Dischare	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet	Nec.-ft.	Fieet	Sec.-ft.	Feert.	Sec.-ft	Feet.	Sece.ft.
1.		4,293		3,086		1.852		210		763		. 5.5
2		3,917	$4 \cdot 80$	2,975		2.1123		790	1.8	685		$\therefore 20$
3		3,541		2.570		2,194		770		719		Tis
4	$5 \cdot 10$	3,165		2,765		-, 365		750		753		350
5.		3,370		2,660			$1 \cdot 9$	730		787		715
6.	$5 \cdot 411$	3,575		2,556		2.811.		1,043		821		(in)
7		3,496		2,452	$4 \cdot 71$	2.350		1,357		854	1.7	(i) 5
5		3,417		2,348		2,745		1,671		887		
9.		3,338		2.244		2,610		1,985	$2 \cdot 9$	920		610
10.		3,259	$3 \cdot 90$	2,140		2.475		2,299		952		592
11.		3,180		2,052		2,340		2,613		$9 \rightarrow 4$		514
12.		3,101		1.964		2,205	$4 \cdot 75$	2.927		1,016		55 ti
13	4.9.5	3,022		1,876		2,070		2,687		1,047		53.5
14.		3,236		1,788		1,935		2.417		1,05	1.4	5%)
15.		3,450		1,700	$3 \cdot 50$	1,800		2,207		1,109		515
16.		3,664		1,612		1,696		1,967	$2 \cdot 6$	1,140		510
17.		3,878	$3 \cdot 15$	1,525		1,592		1,726		1,081		514
18.		4, 1942		1,607		1.488		1.485		1,02?		498
19.		4,306		1,689		1,384	$2 \cdot 75$	1,245		963		$4!2$
20.	$6 \cdot 30$	4,520		1,770		1.280		1,256		(90.)		45
21.		4,397		1,851	$2 \cdot 6.5$	1,175		1,267		847	$1 \cdot 3$	4.40
22		4,275		1,932		1,127		1,278		789		475
23		4.153		2,013		1,079		1.290	$1 \cdot 9$	730		470
24.		4.031	$3 \cdot 85$	2,095		1,031		1,302		752		466
25.		3,909		2,035		951	2.8 .5	: 3 3i.		775		462
26.		3,786		1,975		937		1,236		798		458
27.		3, 6iti3		1,916	$2 \cdot 20$	890		1,1.7		821		454
23.		3,540		1,857		870		1,078		844	1:	450
29.	$5 \cdot 2.5$	3,417		1,795		850		999		8 ti		549
30.		3,307		1,739		830		920	$2 \cdot 2$	890		6
31		3,197	$3 \cdot 35$	1,680				$\cdots 11$				747

NAHATLATCH RIVER (UPPER STATION) NEAR KEEFERS.

Location.-Section 14, township 12, range 27, west 6th meridian.
Records Available. - February 26 to December 31, 1912; January 1 to December 31, 1913.

Winter Conditions.-Open conditions exist throughout the winter.
Gonge.-There is a chain gatuge at which weekly records are taken by (hats. Nicholson.

Chanmel-The chamel is straight, with rapids is short distance above and below the gauge.

Discharge Measurements.-Meterings are made from a cable car, and the gatuge-height-discharge curve is well defined up to at dischatrge of 3,600 feet. The curve has been projected above that point.

Accuracy. - The accuracy is fair except for the short period at the peak of the freshet. The deductions made for this period will, it is experted, be ratified during the coming season.

5 GEORGE V., A. 1915
Discharge Measurements of Nahatlatch River, at Upper Station, 1913.

Date.	Hydrographer.	Meter No.	Width.	Area of Section。	Mean Velocity.	Gauge Height.	Discharge.

Monthly Discharge of Nahatlatch River at Upper Station, for 1913.
(Drainage area, 300 square miles.)

Montr.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
January	447	377	401	1.34	1.54	24,650
February	535	345	420	1.40	$1 \cdot 46$	23,300
March.	395	360	372	1.24	$1 \cdot 43$	22,870
April.	1,465	360	869	$2 \cdot 89$	$3 \cdot 22$	51,700
May.	4,953	730	2,552	$8 \cdot 51$	$9 \cdot 81$	156,900
June.	5,120	3,450	4,222	14.07	$15 \cdot 70$	251,200
July	4,220	2,710	3,361	$11 \cdot 20$	$12 \cdot 91$	206,600
August.	2,695	1,280	1,835	$6 \cdot 12$	$7 \cdot 06$	112,830
September.	2,610	828	1,560	$5 \cdot 20$	$5 \cdot 80$	92,830
October...	2,510	809	1,318	$4 \cdot 39$	$5 \cdot 06$	81,160
November	1,160	710	860	$2 \cdot 87$	$3 \cdot 20$	51,173
December.	921	535	649	$2 \cdot 16$	$2 \cdot 49$	39,905
Year.	5,120	345	1,535	$5 \cdot 12$	$69 \cdot 68$	1,115,118

SESSIONAL PAPER No. 25f
Daily Gauge Heights and Discharges of Nahatlatch River at Úpper Station for 1913.

Daily Gauge Heights and Discharges of Nahatlatch River at Upper Station for 1913-Continued.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.
1.		3,952		2,695		1,685		809		767		921
2		3,818	$7 \cdot 1$	2, 510		1,840		795	$4 \cdot 5$	710		882
3		3,685		2,518		1.994		781		713		843
4		3,552		2,426		2,148		767		716		804
5		3,419		2,335		2.302	$4 \cdot 35$	752		719		766
6	$7 \cdot 75$	3,285		2,244		2,456		1,003		722		728
7		3,202		2,153	$7 \cdot 1$	2,610		1,254		725	$4 \cdot 2$	6911
S		3,120		2,062		2,465		1,505		728		679
9		3,038		1,971		2, 320		1,756	$4 \cdot 3$	730		667
10.		2,956	$6 \cdot 3$	1,880		2,175		2,007		792		655
11.		2,876		1,794		2,030		2,258		584		644
12		2,792	. .	1,708		1,885	$7 \cdot 0$	$\stackrel{2}{2} 510$		916		693
13.	7-2	2,710		1,622		1.740		2,310		977		9.21
11.		2,925		1536	$8 \cdot 9$	1,595		2.110		1,038	$4 \cdot 0$	610
15.		3,142		1,455		1,526		1,911		1,099		604
11.		3,358		1,370		1,4n7		1,712	$5 \cdot 0$	1,169		505
17		3,574 3,789	$5 \cdot 4$	1.241		1,388 1,320		1,513		1,099		592
19.		4,005		1,452		1,252	$\bigcirc 5 \cdot 1$	1,115		- 977		580
20	8.6	4,220		1,538		1,184		1,125		316		575
21.		4,063		1,624	$5 \cdot 1$	1,115		1,134		854	$3 \cdot 9$	576
22.		3, 906		1,710		1,073		1,143		792		565
23.		3,749		1,795		1,031		1.152	4.3	730		566
24.		3.592	$6 \cdot 3$	1,880		1,989		1,161		762		555
25.		3,435		1.830		0.97	$5 \cdot 2$	1,170		79.5		550
26.		3,275		1,780		996		1,112		828		54,
27.	7-6	3,120		1,730	$4 \cdot 6$	6.8		110.94		561		540
28.		3,035		1,650		8.51		996		894	$3 \cdot 5$	53.3
29		2,950		1,630		837		938		927		603
30.		2,865		1,583		823		881	$4 \cdot 8$	960		671
31.		2,780		1,53)				824				739

Nicola River at Merritt.

Locations.- The station is located just below the town of Merritt on the Nicola Valley branch of the ('. P. R., below the confluence of the C'oldwater and Nicola rivers.

Data Available.-June 16, 1911, to December 31, 1911; January 31, 1912, to December 31, 1912; January 1, 1913, to December 31, 1913.

Winter Conditions. - Practically open-flow throughout the entire season.
Gauge.-Vertical staff gauge read tri-weekly by Miss Seaton.
Channel.-The bed of the stream is gravelly and the flow is in two chamels during high stages.

Discharge Measurements.-Ten well-distributed measurements have been obtained and the stream is well rated.

Accuracy.-The accuracy is high and is considered to be within 10 per cent of actual conditions obtaining.

NICOLA RIVER AT MERRITT

The Nicolat river has its source in Nieola lake at an elevation of 2,020 feet and discharges into the Thompson at spences Bridge at an elecation of 700 feet.

The chief tributaries are: from the left, going upstream, Skuhun creek, Guichon creek, Clapperton creek; from the right, going upstream, Agate creek,

SESSIONAL PAPER No. $25 f$

Spius creek and Coldwater river. The dramage area above the mouth, from the Geological survey map, scale 3 miles to 1 inch , is $2,\left(6 ⿹^{2}\right)$ square miles above the mouth and 1,500 miles above the confluence of the Coldwater.

The station at Merritt, which is just below the confluence of the Clearwater, was established in June, 1911, and continuous gatue reathogs have been taken since June 19, 1911, by C. A. Seaton.

Discharge Measurements of Nicola River at Merritt, 1913.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
May 14.	H. J. E. Keys.	1057	Feet. 53	Sq. it. 292	Ft. per sec. 4.7	Feet. $6 \cdot 45$	Sec.-ft. $1,366$

Note.-Gauge reader-Miss Seaton.

Monthly Discharge of Nicola River at Merritt for 1913.
(Drainage area, 1,500 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on 1) ratinare area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
January	46	29	33	0.02	-02	2,029
February	157	29	87	$0 \cdot 06$	$0 \cdot 06$	4,832
March .	12.5	46	4	(1). 1115	0.07	5,165
April.	543	46	256	(1.17	$0 \cdot 19$	15, 23:3
May.	2,915	353	1,318	0.85	1.01	11.040
June...	4,115	9.4	1,755	$1 \cdot 17$	1-30	104,430
July	932	174	504	$0 \cdot 34$	$0 \cdot 39$	30,990
, \ugu-1	288	57	147	$0 \cdot 10$	$0 \cdot 11$	9,039
Sentember.	220	42	109	$0 \cdot 07$	$0 \cdot 08$	6,486
October	41:3	22	151	$0 \cdot 10$	(). 11	9,285
Novernter	157	67	97	(1) [11)	0.07	5,772
1)ecember	95	5	36	$0 \cdot 02$	$0 \cdot 02$	2,214
The year	4,115	5	381	$0 \cdot 25$	$3 \cdot 43$	276,515

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Nicola River at Merritt for 1913.

Dap.	January.		February.		March.		April.		May.		June.	
	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge.
	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.ft.	Feet.	Sec.ft.
		46 46	$4 \cdot 55$		$4 \cdot 9$	125 118	$4 \cdot 6$	46	$5 \cdot 5$	375 353 3	$3 \cdot 2$	3,215 3,515
3		42	$4 \cdot 55$	37	$4 \cdot 85$	110		46		353	8.5	4,115
4	$4 \cdot 55$	37		33		110	$4 \cdot 6$	46	$5 \cdot 5$	353 353		3,515 2,915
			$4 \cdot 3$		4.85	10		4		353	$7 \cdot 9$	2,915
6	$4 \cdot 5$	29		29		103	$4 \cdot 6$	46	$5 \cdot 5$	353		2,437
	$4 \cdot 5$	${ }_{29}^{29}$	$4 \cdot 5$	29	$4 \cdot 8$	${ }_{95}^{95}$	$4 \cdot 6$	${ }_{46}^{46}$	$5 \cdot 8$	423	$7 \cdot 4$	
9		29	$4 \cdot 5$	29	4.8	95		46	$6 \cdot 3$	782	$7 \cdot 4$	1,960
10.	$4 \cdot 5$	29		33		95	$4 \cdot 6$	46	6.7	1,102		1,887
11.		29	$4 \cdot 55$	37	4.8	95		78		1.058	$7 \cdot 3$	1,805
12.	$4 \cdot 5$	29		46		95	$4 \cdot 85$	110	6.6	1,015		1,730
13.		29	$4 \cdot 65$	56	$4 \cdot 8$	95		150		973	$7 \cdot 2$	1,655
14.	4.5	29 29	$4 \cdot 95$	141	$4 \cdot 8$	${ }_{95}^{95}$	$5 \cdot 1$	190	6.5	932 893	6.8	1, 1,195
16.	$4 \cdot 5$	29		149		76	$5 \cdot 2$	228	$6 \cdot 4$	855		1,105
17.		29	$5 \cdot 0$	157	$4 \cdot 7$	67		269		893	6.6	1,015
18.	$4 \cdot 5$	29	4.95	149		74	$5 \cdot 4$	310	$6 \cdot 5$	932		1,210
20.	$4 \cdot 5$	29		133	4	74	$5 \cdot 9$	543	$\bigcirc 6.6$	1,015		1,405
21.		29	$4 \cdot 9$	125	$4 \cdot 7$	67		519		1,213	$7 \cdot 0$	1,405
22.	$4 \cdot 5$	29		125		67	$5 \cdot 8$	494	7.0	1,405		1,300
23		29	$4 \cdot 9$	125	4.7	67		494	$7 \cdot 25$	1,730	$6 \cdot 8$	1,19.5
24	4.5	29		125		67	$5 \cdot 8$	494	$7 \cdot 6$	2,320		1,143
25		33	$4 \cdot 9$	125	$4 \cdot 7$	67		494	1.8	2,715	6.7	1,102
26.	$4 \cdot 55$	37		125		67	$5 \cdot 8$	494		2,815		1,060
27.		37	$4 \cdot 9$	125	4.7	67		469	7.9	2,915	6.6	1,015
29	4	${ }_{37}$			4.7	67		420	$\%$ \%	2,715	6.6	1,015
30.	$4 \cdot 55$	37				57	$5 \cdot 6$	397		2,815		97.
31.		37			$4 \cdot 6$	46			7.9	2,915		

SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of Nicola River at Merritt for 1913. -Continuea

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	Discharge	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$
	Feet.	Sec. ft .	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet	Sec.-ft.	Feet.	Sec.ft.
1.	6.5	932	5.3.5	288	4.15	${ }_{71}^{46}$	$4 \cdot 55$	$\begin{aligned} & 37 \\ & 37 \end{aligned}$	$4 \cdot 8$	${ }^{95}$	4.8	${ }_{95}^{95}$
3	6.4	855		258	4.8	9.5	$4 \cdot 5$	29		95		\bigcirc
5	3.3	782	-	209	$5 \cdot 1$	157	4.4.5	?	\#,	¢	$4 \cdot 7$	${ }_{56}$
6		750	$5 \cdot 1$	190		192		I?	475	\square	$4 \cdot 6$	$4{ }^{4}$
7	$6 \cdot 2$	715		174	5.2	2	4.4.5	22		74		70
8.	万. 1	693 652	J.0	157 157	$5 \cdot 1$	209 190	$5 \cdot 0$	${ }^{\text {'117 }}$	1,7	${ }_{6}^{16}$	8	9.5 5.5
10.		6.37	5.0	157		174		300	47	67	4.4	1.5
11.	6.05	623		157	$5 \cdot 0$	151	$5 \cdot 7$	443		67		10
${ }_{13}^{12}$	$5 \cdot 5$	9!n)	5-11	157	4.9	141	$5 \cdot 5$	395	1.7	67	$4 \cdot 2$	5
14.		$\bigcirc 4$	$5 \cdot 1$	157	$4 \cdot 9$	125	3.	290	4.7	${ }_{67}^{64}$	4.5	${ }_{29}^{17}$
15.	5.85	31.3		111	4.1	125	5.2	225		\cdots		37
16.		494	$4 \cdot 9$	125		110		192	$4 \cdot 8$	95	$4 \cdot 6$	
17.	5.7	465	5.11	141	$4 \cdot 5$	${ }_{95}^{9.5}$	- 11	157	- 11	126	4.5	37
19.	5. 6,5	420		157	4.6	9.5	4.9	12,		141		22
20.		386	5-11	157		88		141	4	125	4.4	1.5
21.	$5 \cdot 5$	353		141	$4 \cdot 75$	81	$5 \cdot 1$	157		110		
22.	$5 \cdot 4$	3,1 310	4.9	${ }_{110}^{125}$	4.9	74 67	$5 \cdot 0$	15.7	$4 \cdot$	(1).	$4 \cdot 3$	5 5
24.		29.3	$4 \cdot$	95		6.7		149	$4 \cdot$	95	4%	5
25.	$5 \cdot 3$	267		s	4.7	67	$4 \cdot 95$	141		110		10
26.		220	4.75	\$1		67		133	4.9	125	$4 \cdot 4$	15
27.	5-11.5	174		24	4.7	67	4.9	12.5		12:		$\stackrel{22}{9}$
28. 29	5.15	191	4.7	67		57		10.	$4 \cdot 1$	12.5	4.5	29
30.		238	$4 \cdot 7$	9	d	42		$1: 4$	4 ,	9.5	4.5)	29
31.	$5 \cdot 3$	267		57				95				29

NICOLA RIVER (MOUTH).
Location.-Section 1, township 17, range 25,west 6th incridian.
Records Available.-August 1 to December 1, 1911; April 5 to December 21, 1912; May 9 to December, 11, 1913.

Winter Conditions.-Not very severe. Stream is usually under ice cover during January and February.

Gauge.-Inclined staff gauge bolted to a large rock on the stream's right bank, and referred to bench-marks. Tri-weekly readings are obtained by Miss Violet Curnow.

Channel. - Stream is 100 to 150 feet in width, and hat a row sud eravel bed. Flow varies from 150 to 5,000 c.f.s., and in gauge heights is 6 feet.

Discharge Measurementi.-The gatugeheight-dishtarge murve is defined hy well-distributed measurements.

Accuracy.-The curve is excellently defined up to a discharge of 4,000 second-feet, which represents the maximum flow for an arerage year. Ahowe this point the curve is projected for the season of 1913 when a maximum of 5,300 second-feet, was recorded. The accuracy of the whole is very high.

NICOLA RIVEIR A'I' MOU'TH.
The Nicola river rises in Nicola lake at an elevation of 2,020 feet, and discharges into the Thompen river near speners Bridere at an revation of Tol feet.

The mean annual precipitation over the whole drainage area is very small, not exceeding 15 inches. The area of the watershed is 2,650 square miles, 1,500 square miles of which is about 45 miles long and rises in Nicola lake, at an elevation of 2,020 feet. Nicola lake is 10 miles long and from half a mile to $1 \frac{1}{2}$ miles wide. It is fed chiefly by the following streams:
(1) Guichon creek, which rises in the hills 15 miles south of Nicola lake, at an elevation of 3,000 feet.
(2) The upper Nicola river rises in the Trepanage plateau some 25 miles southeast of Nicola lake at an elevation of 4,000 feet. Chaperon and Douglas lakes are both tributaries of this stream.
(3) Stump lake and its tributaries 10 miles north-east of Nicola lake.
(4) Moore Creek, which rises in the hills 10 miles north of Nicola lake.

From Nicola lake the Nicola river flows in a southerly and westerly direction for 7 miles to Merritt, where it is joined by the Coldwater river. The Coldwater river is a large and flashy stream, draining 360 miles of country south of Merritt, and rising on the east slope of Anderson river mountain at an elevation of 4,000 feet. From Merritt the Nicola river flows in a northwesterly direction for 40 miles to discharge into the Thompson river at Spences Bridge, at an elevation of 650 feet. Thirty-five miles from the mouth, at Lower Nicola, Guichon creek enters. Guichon creek is a very contentious irrigation stream, and drains 475 square miles of land, a large percentage of which is suitable for cultivation, (See Gazetteer on Guichon creek.) Twenty-nine miles from the mouth, at Canford, Spius creek flows into the Nicola river. Spius creek drains 160 square miles of land east of Canford, rising 10 miles northwest of the source of the Coldwater river, at an elevation of 3,500 feet.

The Nicola Valley is a famous ranching country, the rolling hills being suitable tor grazing lands. Possibly the most celebrated district in the valley is the Douglas lake country. Here some 100,000 acres of land is controlled by one large company, known as the Douglas Lake Cattle Company.

Good agricultural districts are scattered all through the Nicola river drainage. On Guichon creek alone probably 20,000 acres of land are under cultivation. The land around Nicola lake is all taken up. All through the valley, however, in dry seasons there is a scarcity of water, not so much due to the lack of water but to the lack of system in properly ulitizing the water, and good ditches.

Considerable mining is carried on in the Nicola valley. At Merritt three coal mines are in operation, and in the vicinity several rich gypsum claims have been recorded.

Practically all water-power possibilities of Nicola river proper have been eliminated by the presence of the C.P.R. Nicola Valley branch. This railroad follows the river between Spences Bridge and Merritt, and any development would interfere with the present right of way. There is small industrial power on sipius creek, but any installation would be expensive. The Coldwater river affords similar opportunities to spius creek, but the power all through the valley is very limited.

There are two stations on Nicola river. The upper one at Merritt was established on Jume 17, 1911, by ('. E. Richardson, and readings have been taken during 1911, 1912, and 1913.

The measuring section is located on the upstream side of the highway bridge, immediately below the mouth of the Coldwater river. Merritt station is slightly over 1 mile distant from the (. P.R. track. Measurements are made by cable suspension.

The gauge is a 6 -foot standard vertical staff gatuge. It is mailed to the right abutment of the bridge on its upstream side.

The stream is confined between the bridge abutment to one channel, whose bed is gravelly.

SESSIONAL PAPER No. $25 f$

The elevation of the south rail of the C, P. R. Spences Bridge to Nicola Branch at the crossing of the road to Collettsville is 1.j. (); feet above the datum of the gauge.

The station at the mouth of Nicola river was established on June 19, 1911, by C. E. Richardson. The measuring section is located 200 yards from the mouth of the river on the upstream side of the highway bridge. Measurements are made by cable suspension. The gauge is an inclined stafi bolted to a large rock on the right bank of the stream about six hundred yards ahove the measuring section.

The river is always confined to one channel, whose bed is rock and gravel with no vegetation. During high stages of the Thompon river water is hacked up to the measuring section, but not to the gauge.

Discharge Measurements of Nicola River at Mouth, 1913.

Date.	Hydingrapher.	Meter No.	Width.	Area of section.	Mean velocity.	Gauge height.	Discharge.
	$\begin{aligned} & \text { K. G. Chisholm } \\ & \text { do } \\ & \text { do } \end{aligned}$	$\begin{aligned} & 1144 \\ & 1055 \\ & 1055 \end{aligned}$	Feet.$\begin{aligned} & 130 \\ & 150 \\ & 11.3 \end{aligned}$	Sq. ft.$\begin{aligned} & 499 \\ & \stackrel{49}{9} \\ & 199 \end{aligned}$	Ft. per sec.$\begin{aligned} & 5 \cdot 41 \\ & 5 \cdot 34 \\ & 2 \cdot 11 \end{aligned}$	Feet.	Sec.-ft.
Ma: 3						$\therefore 49$	2.586
June 7.						(in)	4,159
August 12.						$2 \cdot 5$	410

Monthly Discharge of Nicola River at Mouth for 1913.

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Nicola River at Mouth for 1913.

Day.		May.		June.	
		Gauge Height	Discharge	Gauge Height.	Discharge
		Feet.	Sec.-ft.	Feet.	Sec.-ft.
				$7 \cdot 4$	5, 375 5×251
					5.144
5				$7 \cdot 2$	5,037 4,925
¢.					
7				6.6	4,486 4,050
8					4,050
10.			2,416	$6 \cdot 6$	4,050
11.			2,452		3,750
12.		$5 \cdot 4$	2,490		3,450
13			2,520		3,150
15.			2,550 2,580	$5 \cdot 7$	2,850
16.		$5 \cdot 5$	2,610 2,650	$5 \cdot 7$	2,850 2 2
18.			2,690		3,242
19		$5 \cdot 6$	2,730	6.3	3,635
20.			2,706		3,590
21.			2,682		3,545
22.			2,660	$6 \cdot 2$	3,500
23.		$6 \cdot 3$	3,635		3,282
24.			4,070		3,066
25.			4,505	$5 \cdot 7$	2,850
26.			4,940		2,820
27.		7.5	$5 \cdot 375$		2,790
28.			5,375		2,760
29.			5,375	$5 \cdot 6$	2,730
30			5,375		2,576
31.			5,375		

SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of Nicola River at mouth for 191 . -Continued.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$	Gauge Height	Discharge	Gauge Height	Discharge
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1		2,423		700		180		216		544		337
$\begin{aligned} & 2 . \\ & 3 . \end{aligned}$	$5 \cdot 2$	$\stackrel{2,270}{2,147}$		${ }_{642}^{671}$	$1 \cdot 8$	180 890	$1 \cdot 9$	1210	525 506	$2 \cdot 2$	300 276
4.		2,023		613	4.5	1,600	1,8	150		4.37		253
5.		1,899		584	4.9	1,965		180	. .	468		232
6	4.7	1,775		555		1,650		1.11		449	1.9	210
		1,665		526		1,335	$1 \cdot 8$	180		430		187
9.	$4 \cdot 3$	1,445		498	$3 \cdot 7$	1,020		200	.	${ }_{392}$		174
10.		1,407		439		790	2.0	240		373		158
11.		1,369	$2 \cdot 5$	410	$3 \cdot 1$	675		280		354	$1 \cdot 16$	145
13.	$4 \cdot 1$	1,295		${ }_{354}^{382}$	2.8	530		320 360	$2 \cdot 3$	${ }_{4} 335$		
14.		1,258		327	2.9	575		400		495		
15.		1,222	$2 \cdot 2$	300		506		440	$2:$	575		
16.		1,186		323		438		480				
17.	3.9	1,150		346	$2 \cdot 4$	370		521		531		
18.		1,120	$2 \cdot 4$	370		359		563		509		
19.		1,090		430		347		603		487		
20.		1,060	2.7	490	$2 \cdot 3$	335		644		48.5		
21.		1,030	$2 \cdot 5$	410		335		685		443		
22.		1,000		355		335	3.2	725		421		
23.		970	$2 \cdot 2$	300		335		71.5		? 4		
24.		94 (1)		300	$2 \cdot 3$	335		696		377		
25.		910		300		304		677		\%iti		
26.		850	$2 \cdot 2$	300		272		658	$2 ;$	\%		
27.		si)		270	$2 \cdot 0$	240		6:?		(ti)		
38.	820		240		234		620		";		
30		790		210		228		601	$\because 5$	410		
${ }_{31}^{30}$		760	$1 \cdot 8$	1.50	222	5		374		
		730		180				563				

NISKONLITH CREEK NEAR SHUSWAP.
Location.-Section 5, township 21, range 13, west 6th meridian, below Niskonlith lake.

Liecords Acrailable. September 1 to December 1, 1911; April 1 to Áeptember 13, 1912; May 1 to September 30, 1913.

Winter Conditions.-Some short cold spells during the winter. Stream is practically dry from November to March.

Gouge.-Vertical staff gauge read semi-weekly he Miss Violet Ifofiman.
Channel.-The stream bed is composed of large rocks and boulders, the current is swift and the control good.
bischarge Measurements. - The curve is poorly defined for medium stages although meterings have been secured at high and low water.

Accuracy.-The accuracy on the whole cammo be wouched for unt il further meterings are obtained.

NISKONLITH CREEK.
Niskonlith ereek, is a stream about 10 miles in length, 4 to 10 feet in width and varies from a few inches to 2 foet in depth. Ite dramage area is 50 square miles. Its source is in the hills of township 22, range 14, west of the 6 th meridian, the northern slope of which feeds Me(iillivary oreck an important tributary of Louis creek. Niskonlith creek is little known and as yet unused above Niskon-
lith lake, an ideal storage reservoir 2 miles from South Thompson river at an elevation of 1,620 feet. The Indians of the Niskonlith reserve are the principal users, and the flow is well regulated by a dam installed by the Indian Department. It is capable of raising the level of Niskonlith lake, whose area is 1,000 acres, 8 feet, thus impounding 8,000 acre-feet which is however, much in excess of the normal run-off of the stream. The normal precipitation in the Niskonlith watershed is about 15 to 20 inches per annum.

There is sufficient water in Niskonlith creek for all users, and suggestion has been made that some of it might be applied to land in the Pemberton and Moulton Creek valleys.

A drop of over 500 feet in 2 miles between Niskonlith lake and the South Thompson indicated the possibility of a small power development. The mean flow, however is very small, but it might be augmented by diversion from a tributary of Adams lake.

The station was established on August 26, 1911, by ('. G. Cline, and semiweekly gauge readings taken during the remainder of the 1911 and the whole of the 1912 and 1913 irrigation season. The station is located about half a mile above the highway, along the South Thompson river, and half mile below Niskonlith lake. It is also half a mile below the intake for the Indian Reserve irrigation ditch.

The gauge is a 3 foot standard gauge, nailed to an inch birch on the right bank of the stream. It is nearly opposite an old deserted cabin, which stands on the flat. Measurements are made by wading. The banks are 3 to 5 feet in height, and the stream is confined to one channel, which varies in depth from a few inches to 2 feet. There are bench-marks, whose elevations are referred to the datum of the gauge.

Discharge Measurements of Niskonlith Creek near Shuswap for 1913.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1911.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Aug. 28	C. G. Cline	1,046	10	$9 \cdot 2$	0.5	(1.66	$4 \cdot 43$
April 17	Cline \& Dann	1,046	10	$0 \cdot 15$	$0 \cdot 6$	0.88	0.1
May 20	E. M. Dann.	1,044	80	$17 \cdot 9$	$3 \cdot 7$	1.92	$66 \cdot 9$

Monthly Discharge of Niskonlith Creek, near Shuswap for 1913.
(Drainage area, 50 square miles.)

	Discharge in smond-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
May	$26 \cdot 5$	$3 \cdot 0$	13.5	0.26	0.30	830
June	$38 \cdot 0$	$26 \cdot 5$	$33 \cdot 4$	$0 \cdot 66$	0.74	1,990
July.	$30 \cdot 2$	$0 \cdot 4$	A. 1	(1. 11 i	(). 18	500
August	$17 \cdot 5$	$0 \cdot 4$	$11 \cdot 9$	0.24	$0 \cdot 28$	730
September	$15 \cdot 0$	$10 \cdot 5$	$11 \cdot 7$	$0 \cdot 24$	$0 \cdot 26$	700

Note.-Artificial control.

SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of Niskonlith Creek, near shuswap, for 1913.

PAUL CREEK (BELOW PAUL LAKE.)

Location.-Northeast boundary Kamloops Indian Reserve No. 1.
Records Available.-July 1 to October 6, 1911; May 12 to September 25, 1912; May 18 to September 30, 1913.

Winter Conditions.-Stream usually becomes very low and freezes, or dries up completely during the winter.

Gauge.-Vertical staff gauge read at least once a week by E. R. Ridout.
Channel.-Channel is rocky and current very swift at high stages.
Discharge Measurements.-The gauge-height-discharge curve is fairly well defined, but owing to poor conditions for meterines, the freshet flow is probably not deduced with the highest accuracy. The flow is artificially controlled by a dam on Paul Lake.

Accuracy. - With the exception of the flood period the accuracy of returns is high.

PAUL CREFK.
Paul creck has its source in township 20, range 14, west 6 th meridian, at an elevation of 3 , 5 of feet and, flowing in a westerly direction, diseharese into the North Thompson river, near Kamloops, at an elevation of 1,140 feet. It is part of the North Thompeon dramage; the dratnage area, above the outlet of

Paul lake as measured from a Geological Survey map, dated 1895, scale 2 miles to 1 inch, is 110 square miles. The precipitation varies from 25 inches, in the hills at the source, to 10 inches at the mouth. Paul creek is a contentious irrigation stream, about 20 miles in length, varying from 5 to 25 feet in width, and from several inches to a foot in depth. The drainage basin of Paul creek is well timbered with British Columbia fir, and in the upper reaches, spruce and balm of gilead are to be found. The first record on the stream is held by the Indians of the Kamloops Indian reserve, and it is regrettable that this somewhat large share of the supply is not used to better advantage. Often at the height of the irrigation season, the Indian ditch may be seen discharging into the Thompson river, while their fertile land lies awaiting the water so necessary for successful production.

The surplus flow of the stream, after the Indians are supplied, is held by the Harper estate, 12 miles east of Kamloops on the South Thompson river. A dam has been built by them with the co-operation of the Indians on Paul lake for storage purposes, and is effective in impounding a good portion of the spring run-off of the drainage basin. The dam could, however, be much improved, and the whole run-off successfully stored.

In its upper reaches, Paul creek flows through several large marshes and hay meadows, which flood in the spring time. It has been suggested that if the channel of Paul creek were deepened as it passes through these meadows and marshes, evaporation would be materially decreased and the flow of Paul creek augmented.

The residents of upper Paul creek (east of Pinantan lake) can raise good crops in average years without the aid of irrigation, although water when judiciously applied is of much assistance.

Below Paul Lake.-The river station on Paul creek below Paul lake was established July 2, 1911, by C. G. Cline. The measuring section is in a flume just above the Harper estate, and I. R. diversion. A standard vertical staff gauge is located on the left bank 50 feet above the measuring section; all measurements are made by wading. This station was established to determine the flow from Paul lake.

Above Pinantan Lake-This station was established August 25, 1911, by C. C. Cline, but was abandoned at the end of the irrigation season of 1912. This station was unsatisfactory, as the stream overflowed its banks during high water.

Below Pinantan Lake.-This station was established June 13, 1912, by E. M. Dann. The measuring section is located on the down stream side of the highway bridge, 100 feet below the outlet of Pinantan lake; all measurements are mada by wading. A standard vertical staff gauge is located on the downstream side of the aforementioned bridge. This station was established to take the place of the one abandoned above the lake. Two measurements were taken in 1912. (See miscellaneous measurements on Paul creek.)

Discharge Measurements of Paul Creek below Paul Lake, 1913.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1913.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
May 7.	H. J. E. Keys.	1,057	$5 \cdot 5$	$5 \cdot 0$	7.8	$2 \cdot 40$	39.2
	E. M. Dann...	268	5.5	$8 \cdot 2$	11.0	$2 \cdot 70$	90.7
Sept. ${ }_{6} 9$	H. J. E. Keys.	1,057 1,057	5.5 6.0	$\stackrel{-76}{3 \cdot 4}$	6.6 1.8	$\xrightarrow{1.65} 1.59$	$\stackrel{5 \cdot 0}{10.1}$

[^18]SESSIONAL PAPER No. 25f
Monthly Discharge of Paul Creek, below Paul Lake, for 1913.
(Drainage area, 65 square miles.)

Monte.	Discharge in Second-Feet.				Ren-Ofr.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
June.	90	35	:2.?	$0 \cdot 80$	$0 \cdot 89$	3,112
July..	34	23	29	9. 4.5	0.52	1,783
August...	23			0.23	0.26	922
September.	0			0.07	0.08	268

Daily Gauge Heights and Discharges of Paul Creek, below Paul Lake, for 1913.

DAY.	May.		June.		July.		August.		September.	
	Gauge Height.	Discharge.								
	Feet.	Sec.-ft.								
1.			$2 \cdot 7$	90 86		34		$\begin{aligned} & 23 \\ & 23 \end{aligned}$		$\begin{aligned} & 9 \\ & 9 \end{aligned}$
3.				82		34	$2 \cdot 1$	22		9
4.				74 73		33 33		21 21		$\begin{aligned} & 8 \\ & 8 \end{aligned}$
6.				69	$2 \cdot 3$	32		20		S
7.				64		32		20	$1 \cdot 65$	7
8			$2 \cdot 6$	60		32		19		7
10.				56		32	$2 \cdot 0$	18		6
11.				55		31		18		5
12.				53		31		17		5
13.				52	$2 \cdot 25$	30		17		4
11.				50		30		16	1.5	3
15.			$2 \cdot 5$	48		30		16		3
16				47		29		15		3
17.				46		29	1.9	14		3
15.	$2 \cdot 6$	60		44		28		14		3
19.		58		43		28		13		3
20.		56		42	$2 \cdot 2$	27		13		3
21.		5.5		40		27		12	1.45	$2 \cdot 5$
22.		53	$2 \cdot 4$	39		27		19		2
23.		53		39		26		12		2
24.		50		38		26	$1 \cdot 5$	11		2
25.	$2 \cdot 5$	48		38		25		11		$1 \cdot 5$
26.		$\therefore 1$		37		25		11		$1 \cdot 5$
27.		60		37	$\because \cdot 1$.	24		11		1
28.		66		36		24		10	$1 \cdot 3$	0.5
29.		72	$2 \cdot 35$	3.5		21		10		
30.		78		35		$\therefore 1$		10		
31.		84				23	1.75	10		

PAUL CREEK (BELOW PINANTAN LAKE.)
Location.-Section 27, township 20, range 15, west 6th meridian.
Records Available.-June 1 to August 31, 1913.
Winter Conditions.-Stream generally freezes over during the winter months.
Gauge.-Vertical staff gauge read daily luring the irrigation seaton by A.
Pene
25F-18

Channel.-The channel varies in width from 3 to 15 feet. Together with Lloyd creek, this stream represents the chief source of supply for the Paul lake reservoir.

Discharge Measurements.-Three meterings only were taken and gauge-height-discharge curve is poorly defined.

Accuracy.-Very little reliance can be placed on the figures appended.

Discharge Measurements of Paul Creek below Pinantan Lake, 1913.

Monthly Discharge of Paul Creek below Pinantan Lake for 1913.

Month.	Discharge in Second-Feet.			Run-Off.
	Maximum.	Minimum.	Mean.	Total in acre-feet.
June.	$5 \cdot 2$	2.7	3.93	234
July	$4 \cdot 5$	1.0	$2 \cdot 59$	159
August.	1.8	0.1	$0 \cdot 70$	43

Note.-Accuracy "D".
During low water Pinantan lake is practically dammed by boards to preserve the fishing.

SESSIONAL PAPER No. $25 f$
Daily Galge Heights and Discharges of Paul Creek below Pinantan Lake, for 1913.

Day.	May.		June.		July.		August.		September.		October.	
	Gsuge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge.	Gauge Height	Discharge	(iatuge Height.	Discharge	Gauge Height.	Discharge
	Feet.	Sec.-ft.	Feet.	sec-ft.	Feet.	Sec.-ft.	Feet.	Nec.ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.
1			0.9	$5 \cdot 2$	$0 \cdot 8$	$3 \cdot 9$	11.5	$1 \cdot 0$	$0 \cdot 2$	0.2		
2			0.9	$5 \cdot 2$	$0 \cdot 8$	$\because 9$	$0 \cdot 5$	1.0	$0 \cdot 2$	$0 \cdot 2$		
3			$0 \cdot 9$	$5 \cdot 2$	11.35	$4 \cdot 5$	$0 \cdot 55$	1.4	11.95	$0 \cdot 2$		
4.			0.85	$4 \cdot 5$	$0 \cdot 10$	3.9	$0 \cdot 55$	1.4	11.9	$0 \cdot 2$		
			0.8	$3 \cdot 9$	$0 \cdot 8$	$3 \cdot 9$	11.5	$1 \cdot 11$	11.2	$0 \cdot 2$		
6.	$1 \cdot 57$	$16 \cdot 3$	0.5	$3 \cdot 9$	0.5	$3 \cdot 9$	$0 \cdot 5$	$1 \cdot 1$	$0 \cdot \underline{2}$	0.2	$0 \cdot 3$	$0 \cdot 3$
7			$0 \cdot 8$	$3 \cdot 9$	11.5	3.9	$0 \cdot 6$	1.4	(1) $\cdot 2$	0.2		
s			$0 \cdot 8$	3.9	11.5	$3 \cdot 9$	11.5	1.8	(1) 2	$0 \cdot 2$		
9			0.9	$3 \cdot 9$	$0 \cdot 75$	$3 \cdot 3$	11.5	$1 \cdot 11$	(). 2	$0 \cdot 2$		
111			0.5	$3 \cdot 9$	11.75	$3 \cdot 3$	(1-)	$1 \cdot 0$	$0 \cdot 3$	0. 3		
11.			0.50	$3 \cdot 3$	0.75	$3 \cdot 3$	$0 \cdot 5$.	$1 \cdot 0$	$0 \cdot 2$	$0 \cdot 2$		
12.			$0 \cdot 75$	$3 \cdot 3$	$0 \cdot 8$	$3 \cdot 9$	0.35	$1 \cdot 4$	(1). 2	$0 \cdot 2$		
13.			11.7	2.7	11.7	2.7	11.5	1.0	$0 \cdot 2$	0.2		
14.			0.7 0.75	2.7 3.3	11.7	$2 \cdot 7$	0.4	0.5 0.5				
			$0 \cdot 75$	$3 \cdot 6$	$1 .$.	2.8	1	$0 \cdot 5$				
16.			0.75	$3 \cdot 3$	11.7	$2 \cdot 7$	$0 \cdot 45$	$0 \cdot 8$				
17.			$0 \cdot 7$	$2 \cdot 7$	11.6 .5	\cdots	$0 \cdot 4$	$0 \cdot 5$				
15			0.8	$3 \cdot 9$	11.6 .5	$2 \cdot 2$	$0 \cdot 4$	$0 \cdot 5$				
19.			0.8	$3 \cdot 9$	(1.6.5	$2 \cdot 2$	$0 \cdot 4$	$0 \cdot 5$				
20.			$0 \cdot 5$	$3 \cdot 9$	(1).13	$1 \cdot$	$0 \cdot 3$	$0 \cdot 3$				
21			0.75	$3 \cdot 3$	$0 \cdot 6$	1.8	$0 \cdot 3$	$0 \cdot 3$				
22.			0.5	$3 \cdot 9$	$0 \cdot 6$	1.8	$0 \cdot 35$	$0 \cdot 4$				
23.			0.8	3.9	C. 6	1.4	$0 \cdot 3$	$0 \cdot 3$				
24.			11.4	3.9	$10 \cdot 6$	1.8	$0 \cdot 25$	(1). 2				
	0.97	$6 \cdot 2$	$0 \cdot 8$	$3 \cdot 9$	11.5.5	1.4	$0 \cdot 2$	$0 \cdot 2$				
26.	11.97	$5 \cdot 2$	11.4.)	$4 \cdot 5$	0. 0.5	1.4	$0 \cdot 2$	$0 \cdot 2$				
27.	0.9	$5 \cdot 2$	0.85	$4 \cdot 5$	F, 5.5	1.4	$0 \cdot 2$	$0 \cdot 2$				
28.	11.9	$5 \cdot 3$	11.4 .5	4.5	11.5	1.11	$0 \cdot 2$	$0 \cdot 2$				
29.	11.9	3.2	11.5.j	4.5	0.5	1.11	$0 \cdot 2$.	$0 \cdot 2$				
30.	0.9	$5 \cdot 2$	0.85	4.5	0.5	$1 \cdot 0$	11.15	$0 \cdot 1$				
31.	0.9	$5 \cdot 2$			0.5	1.0	0.15	$0 \cdot 1$				

SHUSWAP RIVER.
Location. - The gauging section is located in township 18, range 9. west 6th meridian at the highway bridge at Enderby, B.C.

Records Available.-March to November, 1912; April to December, 1913.
Winter Conditions.-The thermometer seldom goes below - $10^{\circ} \mathrm{F}$. The snowfall at Enderby is not heary: the river is generally frozen for about three months.

Gauge. - A vertical staff gauge is used and read by Mr. P. Mowatt, daily.
Channel.-The channel is straight for 100 yards at section. The rise and fall in the river each year is about 10 feet. No shift in control is as yet appreciable.

Discharge Measurements.-Ten well distributed measurements have been made during 1911-12-13. Weaturements are made from cable and boat, exeept in high water, when they are made from bridge.

Accuracy.-Accurate gauge readings are obtained, the discharge measurement plot up well; these results are within 5 per cent except in high water, when they may not be more accurate than within 10 per cent.
'5 GEORGE V., A. 1915

Discharge Measurements of Shuswap River near Enderby, 1911-13.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1911			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
$\begin{aligned} & \text { Aur. } 25 . \\ & \text { Oct. } \end{aligned}$	C. E. Richardson do	$\begin{aligned} & 1,048 \\ & 1,048 \end{aligned}$	$\begin{aligned} & 212 \\ & 204 \end{aligned}$	$\begin{aligned} & 2,118 \\ & 1,890 \end{aligned}$	0.92 0.69	$\begin{aligned} & 4 \cdot 08 \\ & 3 \cdot 15 \end{aligned}$	$\begin{aligned} & 1,948 \\ & 1,300 \end{aligned}$
1912							
Feb. 23	C. E. Richardson.	1,047	180	1,680	$0 \cdot 35$	1.90	587
May 20	C.E. R. \& H. C. H.	1,048	283	4,970	$2 \cdot 31$	$10 \cdot 65$	11,400
June 16.	C. E. Richardson	1,048	${ }_{275}$	5,550 3,760	${ }_{1}^{2.36}$	12.05	13,094
Sept. 7	do	1,048	245	3,760 3,156	1.04	$7 \cdot 34$ $4 \cdot 60$	6,270 3,270
1913							
June 5.	J. A. Elliott.......	1,672	328	7.016	${ }^{2} \cdot 60$	14.60	18,700
Aug. 26.	J. A. Elliott......	1,672	230	2,630	${ }_{1 \cdot 23}$	5.20	5, 3,230

Monthly Discharge of Shuswap River, near Enderby for 1913.
(Drainage area, 1,650 square miles).

Monter.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
April.	5,660	603	2,712	$1 \cdot 64$	1- 8.3	161,000
May.	14,300	4,150	7,258	$4 \cdot 40$	$5 \cdot 07$	446,000
June.	21,800	13,400	17,443	$10 \cdot 57$	11.80	1,040,000
July	13, 600	5,300	9,106	$5 \cdot 52$	$6 \cdot 36$	560,000
Aurust.	5,240	2,810	3,789	$2 \cdot 29$	$2 \cdot 64$	233,000
September.	3,160	2,180	2,773	1.68	1.87	165,000
October...	2,080	1,720	1,957	1.18	1.36	120,000
November.	1,980	1,560	1,746	1.06	1.18	104,000
December.	1,560	965	1,240	0.75	0.86	76,200

SESSIONAL PAPER No． $25 f$
Daily Gauge Heights and Discharges of thuswap River near Enderby for 1913

Day．		Apri！		May．		June．	
		Gauge Height	Dis－ charge．	Gauge Height．	Dis－ charge	Gauge Height．	Dis－ charge．
		Feet．	Sec．－ft．	Feet．	Sec．－it．	Feet．	Sec．－ft．
1		$1 \because$	603	\cdots	5，100	$12 \cdot 9$	15，200
2		$1 \cdot 1$	（in）：	\therefore ；	4， 820	$13 \cdot 4$	16， 100
3		$1 \cdot 3$	603	\cdots \％	4，650	$13 \cdot 4$	17，000
4		$1 \cdot 9$	003	\therefore ¢．	4，410	14－2	17， 600
5.		$2 \cdot 6$	（ii）	$\therefore \cdot 1$	4，280	11.6	18，300
6.		$9 \cdot 2$	749	¢ -1	4，150	11．R	18，300
7.		$2 \cdot 3$	411	$5 \cdot 1$	4，150	11．7	18，500
8.		\cdots	801	－ 4	4，150	$14 \cdot 9$	18，900
9.		$\because \cdot 1$	－i	\therefore ，	4，650	$1.5 \cdot 1$	19，300
10.		$2 \cdot .5$	910	$\therefore 7$	5，240	1．j．4	19．900
11.		$2 \cdot 9$	1，140	\therefore	3，520		
12.		$3 \cdot 3$	1，410	$\because \because$	5，940	$15 \cdot 4$	20，900
13.		8.7	1，720	7.1	6，130	$16 \cdot 1$	21，300
14.		$4 \cdot 1$	2，080	7.7	6，660	$116 \cdot 3$	21，800
15.		$4 \cdot 3$	2，180	$7 \cdot$	6，840	$15 \cdot 9$	20，900
15.		$4 . ?$	2，250	－ 1	7，100	$15 \cdot 6$	20，300
17.		$4 \cdot 7$	2，700	\cdots	7，100	15：	19，500
1.		$5 \cdot 11$	3，040	$\therefore 1$	7，251）	$14 \cdot 6$	18，300
19.		$5 \cdot 3$	3，400	－ 1	7，250	$11 \cdot 9$	17，200
		5－1）	3，760	－ 1	7，250	13.4	16，800
21		$5 \cdot 9$	4，150	$\checkmark \cdot$	7，390	$13 \cdot 5$	16，3C0
22.		6.2	4，540	4.1	7，690	$13 \cdot 3$	15，900
2%		16.2	4，540	－ 1		$13 \cdot 1$	1．5，（f）\％
24.		6． 3	4．ザい	4.7	8，140	12－	15，000
25.		$6 \cdot 6$	5，100	$\cdots \cdots$	8，930	12 －${ }^{\text {i }}$	14，700
26.							
27.		7.11	5，660	$111:$	10， 500	12．；	$14,100$
23.		$6 \cdot 9$	5，520	111.5	11，800	$12 \cdot 1$	13，800
29.		6.5	5，380	$11 \cdot 1$	12，600	12．11	13，600
30.		6.7	5，240	11.9	13，400	11.4	13，400
31.				12.1	11．．．．		

Daily Gauge Heights and Discharges of Shuswap River, near Enderby for 1913.-Continued.

Day.	July.		August.		September.		October.		November.		Derember.	
	Gauge Height	Discharge.	Gauge Height	Discharge								
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	$12 \cdot \mathrm{C}$	13,600	$6 \cdot 7$	5,240	$4 \cdot 7$	2,700	$4 \cdot 1$	2,080	$4 \cdot 0$	1,980	$3 \cdot 5$	1,560
2	11.9	13,400	$6 \cdot 5$	4,960	$4 \cdot 6$	2,590	$4 \cdot 1$	2,080	$4 \cdot 0$	1,980	$3 \cdot 5$	1,560
3	11.7	13, 100	$6 \cdot 4$	4,820	$4 \cdot 7$	2,700	$4 \cdot 0$	1,980	$4 \cdot 0$	1,980	$3 \cdot 4$	1.480
4	114	12,600	$6 \cdot 2$	4,540	$5 \cdot 0$	3.040	$4 \cdot \mathrm{C}$	1.980	$3 \cdot 9$	1,890	$3 \cdot 4$	1,480
5	11.1	12,000	$6 \cdot 1$	4,410	$5 \cdot 1$	3,160	$4 \cdot 0$	1,980	$4 \cdot 0$	1,980	$3 \cdot 4$	1,480
6	$10 \cdot 7$	11,400	$6 \cdot 0$	4,280	$5 \cdot 1$	3,160	$3 \cdot 9$	1,890	$4 \cdot 0$	1,980	$3 \cdot 3$	1,410
7.	10.7	11,400	$5 \cdot 9$	4,150	$5 \cdot 1$	3,160	$3 \cdot 8$	1,800	$4 \cdot 0$	1,980	$3 \cdot 3$	1,410
8.	$10 \cdot 4$	10,900	$5 \cdot 9$	4,150	$5 \cdot 1$	3,160	$3 \cdot 8$	1,800	$4 \cdot 0$	1,980	$3 \cdot 3$	1,410
9	$10 \cdot 2$	10,500	$5 \cdot 8$	4,020	$5 \cdot 1$	3,160	$3 \cdot 8$	1,800	$3 \cdot 9$	1,890	$3 \cdot 2$	1,340
10.	$10 \cdot 0$	10,200	$5 \cdot 8$	4,020	$5 \cdot 1$	3,160	$3 \cdot 7$	1,720	$3 \cdot 9$	1,890	$3 \cdot 2$	1,340
11.	9.9	10,000	$5 \cdot 7$	3,890	$5 \cdot 1$	3,160	$3 \cdot 8$	1,800	$3 \cdot 9$	1,890	$3 \cdot 2$	1,340
12	$9 \cdot 7$	9,720	$5 \cdot 6$	3,760	$5 \cdot 1$	3,160	$3 \cdot 8$	1,800	$3 \cdot 9$	1,890	$3 \cdot 1$	1,270
13	$9 \cdot 6$	9,560	$5 \cdot 6$	3,760	$5 \cdot 1$	3,160	$3 \cdot 8$	1.800	$3 \cdot 9$	1,890	$3 \cdot 1$	1,270
14.	$9 \cdot 5$	9,400	$5 \cdot 6$	3,760	$5 \cdot 0$	3,040	$4 \cdot 0$	1,980	$3 \cdot 8$	1,800	$3 \cdot 1$	1,270
15.	$9 \cdot 6$	9,560	$5 \cdot 6$	3,760	$4 \cdot 9$	2,920	$4 \cdot 0$	1,980	$3 \cdot 8$	1,800	$3 \cdot 0$	1,210
16.	$9 \cdot 4$	9,240	$5 \cdot 6$	3.760	$4 \cdot 9$	2,920	$4 \cdot 0$	1,980	$3 \cdot 8$	1, $8 \mathrm{c}, 0$	$3 \cdot 6$	1,210
17.	$9 \cdot 2$	8,930	$5 \cdot 5$	3,640	$4 \cdot 8$	2,810	$4 \cdot 0$	1,980	$3 \cdot 7$	1,720	$3 \cdot 0$	1,210
18.	$9 \cdot 0$	8,620	$5 \cdot 6$	3,760	$4 \cdot 7$	2,700	$4 \cdot 0$	1.980	$3 \cdot 7$	1,720	$3 \cdot 0$	1,210
19.	8.8	8,300	$5 \cdot 6$	3,760	$4 \cdot 7$	2,700	$4 \cdot 0$	1,980	$3 \cdot 7$	1,720	$3 \cdot 0$	1,210
20.	8.5	7,840	$5 \cdot 6$	3,760	$4 \cdot 7$	2,800	$4 \cdot 0$	1,980	$3 \cdot 6$	1,640	$2 \cdot 9$	1,140
21.	$8 \cdot 4$	7,690	$5 \cdot 5$	3,640	$4 \cdot 6$	2,590	$4 \cdot 1$	2,080	$3 \cdot 6$	1,640	$2 \cdot 9$	1,149
22.	$8 \cdot 2$	7,390	$5 \cdot 4$	3,520	$4 \cdot 6$	2,590	$4 \cdot 0$	1,980	$3 \cdot 6$	1.640	$2 \cdot 9$	1,140
23.	$8 \cdot 1$	7,250	$5 \cdot 4$	3,520	$4 \cdot 6$	2,590	$4 \cdot 0$	1,980	$3 \cdot 6$	1,640	$2 \cdot 9$	1,140
24.	7.9	6,950	$5 \cdot 3$	3,400	$4 \cdot 5$	2,480	$4 \cdot 11$	1.980	$3 \cdot 6$	1,540	$2 \cdot 8$	1.080
25.	$7 \cdot 8$	6,800	$5 \cdot 2$	3,280	$4 \cdot 4$	2,380	$4 \cdot 1$	2,080	$3 \cdot 6$	1,640	$2 \cdot 8$	1,080
26.	$7 \cdot 6$	6,520	$5 \cdot 1$	3,160	$4 \cdot 4$	2,380	$4 \cdot 1$	2,080	$3 \cdot 6$	1.640	$2 \cdot 8$	1.050
27.	$7 \cdot 4$	6,130	$5 \cdot 1$	3,160	$4 \cdot 3$	2,280	$4 \cdot 1$	2,050	$3 \cdot 5$	1.560	$2 \cdot 8$	1,080
28.	$7 \cdot 3$	6,080	$5 \cdot 0$	3,040	$4 \cdot 3$	2,280	$4 \cdot 1$	2,080	$3 \cdot 5$	1,560	$2 \cdot 7$	1.020
29.	$7 \cdot 2$	5,940	$4 \cdot 9$	2,920	$4 \cdot 2$	2,180	$4 \cdot 11$	1,980	$3 \cdot 5$	1,560	$2 \cdot 7$	1,020
30.	$7 \cdot 1$	5, 860	$4 \cdot 8$	2.81 C	$4 \cdot 2$	2.180	$4 \cdot 0$	1,980	$3 \cdot 5$	1,560	$2 \cdot 9$	965
31.	6.5	5,380	$4 \cdot 8$	2,810			$4 \cdot 0$	1,980			$2 \cdot 6$	965

SHUSWAP RIVER AT COTEAU FALL心.
Location.-At Highway bridge crossing below Coteau Falls near Lumby, B.C.

Records Available.-Complete records have been taken by ('oteau Power Company and C'. N. R. engineers during 1912 and 1913. Through their courtesy these records for 1913 have been made available.

Gauge.-Vertical staff gatuge with standard enamel facings. (iauge reatlings obtained daily by R. H. Spurling, C.E.

Channel.-Varying in width from 70 feet at low water to 150 feet at high water. The jamming of logs on a gravel bar below the gatuge is a cause of posible backwater.

Discharge Measurement.--The company's engineer obtains a metering at every appreciable change of stage. A check measurement on his results hy British ('olumbia Hydrographie engineers showed a diserepaney of 6 per cent.

Accuracy.-Further check measurements will be made during 1914, Accuracy is probably very high since obviously great care is taken in obtaining results.

SESSIONAL PAPER No．25f
Monthly Discharge of Shuswap River near Coteau Falls for 1913.
（Drainage area， 640 square miles．）

Montr．	Discharge in Second－Feet．				Run－Off．	
	Maximum．	Minimum．	Me：an．	Per square mile．	Depth in inches on Drainage area．	Total in acre－feet．
January	530	336	382	－60	－ 69	23，488
February．	478	382	412	． 64	． 67	22，881
March．．．	417	371	388	． 61	． 70	23，857
April．	2，730	374	1，405	$2 \cdot 20$	$2 \cdot 45$	83，600
May	9，200	1，605	3，925	$6 \cdot 13$	$7 \cdot 07$	241，340
June ．	13，276	6，280	8．875	13.72	15．31	523，330
July	6，150	2，600	4，288	$6 \cdot 70$	7.72	263，660
August．	23，74	1，470	2，070	$3 \cdot 3$	$3 \cdot 72$	127，280
September．	25，28	1，079	1．52n	$2 \cdot 39$	$2 \cdot 67$	90，920
October．．．	1．350	900	1，139	1．ぶ	$2 \cdot 05$	50， 040
November	1，160	728	887	$1 \cdot 39$	$1 \cdot 55$	52，780
December．	710	455	541	． 85	． 95	33，265
The year．．	13.276	336	2.145	$3 \cdot 36$	$45 \cdot 5 \mathrm{~S}$	1，555，41

Daily Gayge Heights and Discharges of Shuswap River near Cotean Falls for 1913.

Day．	January．		February．		March．		April．		May．		June．	
	Gauge Height．	Dis－ charge	Gauge Height．	Dis－ charge	Gauge Height	Dis－ charge	Gauge Height．	Dis－ charge	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charre } \end{aligned}$	Gauge Heirht．	Dis－ charge
	Feet．	Sec－ft．	Feet．	Sec． ft ．	Feet．	Sec．－ft．	Feet．	Sec．－ft．	Feet．	Sec．－ft．	Feet．	Seec．ft．
1		530		345		417		374		1， 50		9，400
2		53.30 487		382 438		417		374 374		1,805 1.710		10,198 $10,410)$
4		455		418		417		374		1，675		11， 3 （17）
j）		413		393		395		384		1，605		10，580
if		395		383		395		425		1.620		9， 310
7		435		$3 \checkmark .3$		395		412		1，610		9，310
，		$4{ }^{\text {4 }}$		3n3		395		412		1．80．		9， 3.90
3		45.5		38.3		395		420		1.975		11．750
10		382		34.3		405		463		2，595		13，27．5
11		336		383		413		9193：		2，975		13，276
12：		337		383		382		757		3，330		12.475
1.3		340		383		376		1，06．5		3.983		10.91 .5
14		340		39.5		372		1.217		1.1021		110． $60 \times$
1．5		340		417		375		1.440		3，930		9，33．5
14		34.3		4.35		375		1.475		3，720		－ 16.6
17		3.1		476		395		1．680		3.590		1．9．913
is		35.5		4.75		407		1．341		3． 1111		16，3：34
19		34.3		45.5		358		2， 160		3， 330		ti． 3111
21		340		4．5．		378		2,320		3，400		6，ご
21		351		393		373		2，550		3，440		7． 4601
22		35.5		478		376		2，730		3，753		7．310
$2 \cdot 3$		3.5		45.		376		2，595		4.020		5.805
24		35.5		43.5		375		2.458		4，760		6． 4.30
2.5		352		417		376		2，430		5，475		1i． 430
20		3.52	\ldots	417		376		2.315		19．914		12． 1330
27		352		406		375		2.261		6．3．375		11291
24	\ldots	？ 2		$34 . \%$		37.3		…211		7，790		15．364
29		315				371		$\because 112$		5．320		f，：3．ti
：31）		345				371		1，957		8，600）		di．${ }^{\text {and }}$
． 31.		345				374				9，200		

Daily Gauge Heights and Discharges of Shuswap River near Coteau Falls, for 1913.-Continued.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height	Dis-	Gauge Height.	Discharge	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.
$\frac{1}{2}$		6,150 5,910		2,374 2,310		1,415		1,050 1,040		1,127 1,160		710
3		5,616		2,270		1,352		999		1,060		651
4		5,460		2,310		1,800		960		1,023		545
5		5,108		2,310		2,200		960		1,050		640
6.		4,770		2,310		2,528		945		1,050		
		5,114		2,270		2,350		930		1,042		615
8		5,400		2,270		2,200		920		1,034		600
9		5,204		2,506 2,520		1,958		920		1,020		580
11.		4,950		2,250		1,730		920		990		548
12.		4,566		,210		1,530		1,010		8940		548 548
13.		4,450 4,310		$\stackrel{2,210}{2,190}$		1,539 1,475		1,165		${ }_{810}^{873}$		548 548
15.		4,250		2,190		1,420		1,290		825		548
16.		4,020		2,130		1,350		1,300		840		540
17.		3,910		2,030		1,287		1,280		825		530
18.		3,900		2,067		1,294		1,225		825		530
19.		3,620		2,130		1,350		1,225		778		505
20.		3,620		2,090		1,364		1,240		790		478
21.		3,725		2,067		1,300		1,240		776		475
22.		3,900		1,990		1,420		1,200		776		475
23.		3,900		1,900		1,360		1,200		755		475
24.		3,900		1,812		1,310		730		730		470
25.		3,750		1,812		1,265		1,330		740		460
26.		3,600		1,750		1,230		1,350		740		
27.		3,410		1,675		1,167		1,287		765		465
28.		3,020		1,670		1,150		1,273		755		465
29.		2,850		1,548		1,130		1,250		723		465
		2,820		2,530		1,079		1,148		740		455
31.		2,600		1,470				1,140				465

SCOTTIE CREEK.

Location.-Section 16, township 23, range 25, west 6 th meridian, north of Asheroft, B.C., and tributary to the Bonaparte river.

Records Available.-June 1 to October 31, 1911; April 1 to September S, 1912; May 1 to November 28, 1913.

IV inter Conditions.-Conditions throughout the winter are similar to those obtained at Asheroft. There is however, a slightly higher snowfall. Under ordinary circumstances the stream freezes up during the winter months.

Gauge.-Standard vertical staff gauge installed above diversions. Readings made daily during the irrigation season by A. G. Hunter.

Channel.-At measuring section the water is sluggish owing to effect of dam below. The gauge is above all influence of backwater. The stream is 15 to 20 feet in width and the control is good.

Discharge Measurements.-The gauge-height-discharge curve is fairly well defined, but during the freshet the necessity for a stilling box at the gauge was felt.

Accuracy.-Accuracy of returns shown is only fair.

SCOTTIE CREEK.

Scottie creek has its source in the Arrowhead hills, at an elevation of 5,000 feet, and discharges into the Bonaparte river from the east, near 19 mile post on the Cariboo road, at an elevation of 1,600 feet. It is part of the ThompsonFraser drainage. Its drainage area above the mouth is 73 square miles and the gauging station is near the mouth. The water is used for irrigation, and the supply is usually insufficient. Water from scottic ereek was used for placer mining at one time.

The drainage basin of Scottie creek is very roush, with no agricultural land. There are canyons on the stream in places, and the fall is quite heary. There is a wagon road for only half a mile up the creck, with a pack trail for several miles farther. There was a placer mine in the valley at one time, But it has been abandoned. There are indications of mineral in the vicinity. There is some timber in the valley, bu: it is mostly small and its main use would be to conserve the moisture and prevent crosion. Most of the land in the watershed will he used for nothing but grazing.

At one of the canyons a storage dam might be constructed to store surplus flood waters for use in the later part of the irrigation seatom. The canyon is said to be 30 feet deep and 20 feet wide with a good basin behind it.

Scotttie creek is in the dry belt. The precipitation is from 8 to 10 inches The weather is hot in summer and cold in winter.

The gauge on scottie creek is near the mouth, just ahove Walker's diversion. Since the station was established IIunter has dug a ditch above it, and was diverting water through it during part of July and August, 1912. The station was established on June 6, 1911, and the gauge readings were takent wice a day during the irrigation seasons of 1911 and 1912 and 1913. The gatuge is a n-foot cedar staff securely nailed to a tree stump on the left bank of the creek about 200 feet above Wialker's diversion, and just behind Hunter's stable. The meter measurements are made by wading at a section 50 feet below the gange. The stream abore the section is rapid, and below the section it is backed up by the diversion dam. The banks are high enough to prevent overflowing, and are covered with bushes. The bed of the stream is rocky in the rapids with a deposit of mud in the quieter water at the dam. The influence of the dam does not extend to the gauge. It is hard to read the gauge accurately at high water. The general level of the water near the gange should be taken, not the point to which the water backs up. The bank is undercut at the gauge, but it does not seem to effeet the accuracy.

Discharge Meascmements of Scotttie Creek, above Walker's Diversion, 1913.

	Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	$\begin{aligned} & \text { Mean } \\ & \text { Velocity. } \end{aligned}$	Gauge Height.	$\begin{gathered} \text { Dis- } \\ \text { charge. } \end{gathered}$
	1913			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Apr.	30.	Chisholm \& Cline.	1.055	17	10.50	${ }_{1}^{1.3}$	0.95 1.97	14
May	26.	- do	1,055	18	14.05	1.77	1.27	25
Aug.		do	1,055	15	6.94	1-13	0.81	$7 \cdot 9$

Monthly Discharge of Scottie Creek above Walker's Diversion for 1913.
(Drainage area, 73 square miles.)

Montr.	Discharge in Second-Feet				Run-Off.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre feet.
May	$41 \cdot 5$	$13 \cdot 0$	22.8	- 31	. 36	1,402
June	$22 \cdot 5$	$9 \cdot 5$	$12 \cdot 6$	- 17	- 19	750
July	28.8	10.2	$15 \cdot 3$	- 21	- 24	941
August....	$16 \cdot 2$	$7 \cdot 1$	$9 \cdot 7$	-13	-15	596
September	$10 \cdot 2$	$7 \cdot 1$	$7 \cdot 7$	- 10	- 12	458
October...	$10 \cdot 2$	$8 \cdot 1$	$8 \cdot 4$	-11	-13	516
November	$9 \cdot 0$	$7 \cdot 1$	$7 \cdot 2$	-10	$\cdot 11$	428
The period	$138 \cdot 4$	$62 \cdot 1$	$12 \cdot 0$	- 16	$1 \cdot 30$	5,091

Daily Gauge Heights and Discharges of Scottie Creek above Walker's Diversion for 1913.

	Day.	April.		May.		June.	
		Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	Discharge
		Feet.	Sec.-ft.	Feet.	Sec.-ft	Feet.	Sec.-ft.
1				1.0 0.95	14.7 13.0	${ }_{1}^{1.07}$	15.9 15.9
3.				$0 \cdot 95$	13.	1.412	$15 \cdot 3$
4.				0.97	13.7	-95	13
5.				0.97	13.7	.95	13
6.				1.0	14.7	. 92	$12 \cdot 1$
8				1.0	14.7	$\stackrel{9}{9}$	111.5
8.				1.35	15.3 25.6	. 9	11.5
10.				1.85	41.5	. 9	21.5
11				1.65	35.1	. 87	10.7
12.				$1 \cdot 65$	$35 \cdot 1$	- 5.5	$10 \cdot 2$
13.				$1 \cdot 65$	3.5.1	. 85	$10 \cdot 2$
14.				1.6.5	35.1	-85	$10 \cdot 2$
15.				1.45	$28 \cdot 8$	-85	
16			\ldots	1.35	25.6	. 82	$9 \cdot 5$
17.				1.35	$25 \cdot 6$. 82	$9 \cdot 5$
18.				1.35	25.6	-82	9.5
19.			.	1.3.)	$25 \cdot 6$	-82	9.5 9.5
20.					$24 \cdot 1$		
21.				$1 \cdot 3$	$24 \cdot 1$.82	9.5
22.			\ldots	$1 \cdot 3$	$24 \cdot 1$	-82	$9 \cdot 5$
23.				$1 \cdot 2.5$	22.5	-82	4.5
24.			\cdots	$1 \cdot 9$	29.5	. 88	
25			.		$22 \cdot 5$		
				$1 \cdot 22$	21.5	$1 \cdot 11.5$	16.2
27.				$1 \cdot 22$	21.5	1.15	19.4
28.				$1 \cdot 2$	$20 \cdot 9$	$1 \cdot 1$	17.8
32.				1.15	$19 \cdot 3$ $17 \cdot 8$	${ }_{1}^{1 \cdot 25}$	22.5
31		1.(4)		1.11:	15.9		..

SESSIONAL PAPER No． 25 f

Daily Gauge Heights and Discharges of scottie Creek above Walker＇s Diver－ sion for 1913．－Continued．

SPIUS CREEK．

Location．－Section 15，township 13，range 23，west 6 th meridian．
Records Available．－August 18 to November 22，1911；May 8 to September 12，1912；May 25 to November 30， 1913.

Winter Conditions．－Ice conditions exist from November to February under normal conditions．There are several cold periods usually of short duration．

Gauge．－Chain gauge established on March 18，1914，to replace staff gauges which gave unsatisfactory results．The gatuge height is read daily hy（ieorge A． Longbottom．

Channel．－The channel is of rocks and boulders and the velocity of the current is high，even at low water．

Discharge Measurements．－Numerous meterings have been obtained，but it will be necessary to have the new gauge completely rated during 1914.

Accuracy．－The accuracy of results obtained from discharge curves during the past three years is low，and only slight dependence may be placed on them．

ふPIU゚（REFK。
Spius creek has its source in mountains near township 11，range 23，west 6th meridian，at an elevation of 4,000 feet and fowing due north for 2.5 miles． discharges into Nicola river，near the Railway Belt boundary，at an elevation of 1,800 feet．It is part of the Nionda－Thompoon dramage：the dramage area，as measured from a Dominion sectional map），－cate ${ }^{3}$ miles to an inch，is $34 t$ scquare
miles. The stream is used for both lumbering and irrigation. It is a stream varying from 25 to 100 feet in width, from 2 to 10 feet in depth, and with a mean velocity of from 1.5 to 5 feet per second. There is a very large freshet in May. The bed of the stream is generally rocky, and at times it passes through canyons and over small falls. The valley of the creek varies from one-fourth of a mile to 1 mile in width, and contains good agricultural land, for which irrigation is necessary, the precipitation not exceeding 20 inches, excepting very near the source. Considerable land is also taken up along Prospect creek, a large tributary entering from the west, about 10 miles from the mouth. Several timber limits are held along Spius creek about 5 miles from the mouth, by the Nicola Valley Pine Lumber Company. This company established a mill 1 mile up the creek; constructing a timber, rock filled dam, 40 feet high, which affords them a log pond of 25 acres. Logs are driven down the creek during the freshet in May and June.

The first station was established on August 15, 1911, by C. E. Richardson. This station was abandoned at the end of the 1911 season on account of a dam put in by the Nicola Valley Pine Lumber Company, causing back water, and a new gauge put in below the dams by C. E. Richardson on May 22, 1912. On June $22, \mathrm{C} . \mathrm{G}$. Cline moved this gauge up-stream because of interference from irrigation ditchhead works. B. Corbould put in another new gauge in August 14, 1912, which was carried away by a freshet on November 9. Mr. Keys put in a new staff gauge on May 26, 1913, which was again carried away by a freshet. Mr. Keys then established a chain gauge at Longbottom's ranch, 2 miles from the stream's mouth in August, 1913. This was found to be unreliable, so it was replaced by a new chain gauge installed by Mr. Chisholm, on March 18, 1914.

Discharge Measurements of Spius Creek at Longbottom's Ranch, 1913.

Note. \rightarrow Different section.
Monthly Discharge of Spius Creek, near Canford, for 1913.
(Drainage area, 344 square miles.)

Montir.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
June.	535	40	171	0.50	0.56	10,200
July.	265	43	131	0.38	0.44	8,050
- umust	564	123	200	0.58	$0 \cdot 65$	11,900
Scptember	304	123	192	0.55	$0 \cdot 63$	11,800
()ctuber...	218	132	162	0.46	0.51	9,640

Note.-Accuracy "D"
A gauge was established below dam in same position as former gauge in May; But pier to which gauge was fastened was torn out. Finally a chain gauge was established about 2 miles above dam on Iurust 1. This gauge was found unsatisfactory and was replaced by a new chain gauge on March 18, 1914.

SESSIONAL PAPER No. 25f

Spius Creck-Meteringstation.

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Spius Creek, near Canford, for 1913.

	Day.	May.		June.	
		Gauge Height	Discharge	Gauge Height	Discharge
		Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.				3.0 3.0	535 535
,				$3 \cdot 0$	535
4				$3 \cdot 0$	535
5				$2 \cdot 25$	200
6.				$2 \cdot 25$	200
7.				$2 \cdot 25$	200
8.				$2 \cdot 25$	200
9.				$2 \cdot 5$	290
10				$2 \cdot 25$	200
11.				$2 \cdot 05$	142
12.				$2 \cdot 25$	200
13				$2 \cdot 3$	215
14.				$2 \cdot 0$	130
15				1.55	65
16.				1.5	60
17.				1.4	50
18				1.4	50
19				1.75	88
20				1.8	95
21.					
${ }_{23}^{22}$				1.6	70
23				1.6	70
24. 25				1.7	80
25.		$2 \cdot 35$	232	1.7	80
26.		$2 \cdot 5$	290	1.4	50
27.		$3 \cdot 0$	535	$1 \cdot 3$	40
28.		$3 \cdot 0$	535	$1 \cdot 35$	45
29. 30		${ }_{2}^{2 \cdot 5}$	290		45 45
31.		${ }_{2.7}$	480		

SESSIONAL PAPER No. $25 f$
Daily Gatge Heights and Discharges of spius ('reek, near C'anford, for 1913-Continued.

STEIN CREEK.

Location.-At highway bridge, near mouth, in section 27, township 15, range 27 , west of 6 th meridian,

Records Available.-September 22 to December 23, 1911; January 14 to November 24, 1912; April 11 to August 31, 1913.

Winter Conditions.-Open water at gauge all year.
Gauge.-Vertical staff gauge. Also auxiliary chain gauge on bridge. Gauge readings about once a week.

Channel.-Rocks and Boulders-eddies at certain stages.
Discharge Measurements.-One measurement in 1911, three in 1912, and one in 1913 show fair agreement but do not cover the bigger freshets.

Accuracy.-The infrequency of the gauge readings impairs the reliability of the records.

STEIN CREFK.

Stein creek has its source in the mountains surrounding Mountain Stein, at an elevation of 5,000 fere, and flowing in an catomy diremion for a distance of 30 miles, discharges into the Fraser river mear Letton at an wevation of n ato feet. It is part of the Fraser drainage; the drainage area, as measured from a Dominion sectional map, scale 3 miles to 1 inch, is 130 square miles.

5 GEORGE V., A. 1915
The precipitation at the mouth is small, not exceeding 20 inches, but at the source on the eastern mountains of the Coast range, the precipitation, both rain and snow, is heavy, from 50 to 70 inches.

The maximum discharge in 1912 amounted to 3,000 second-feet on June 30 ; the minimum flow was 80 second-feet on the 10 th of March. The stream is generally about 50 feet wide, from 2 to 10 feet deep, and varying in velocity from 1.5 to 8 feet per second. The valley is rough and broken, covered with underbrush and scattered timber. The stream is swift and turbulent, rushing in and out of canyons, and over rapids and falls. The drop in the last 20 miles of the river is at the rate of 150 feet per mile.

Through this district the hunting is excellent, and the fishing unexcelled. Stein creck was prospected years ago, and a trail still runs practically to the source, but it presents great difficulties to travellers.

Stein creek is used at the present time for irrigation purposes. Records to the extent of 1,000 inches have been taken out, appurtenant to lands in the vicinity along the valley of the Fraser.

The C.P.R. investigated Stein creek regarding water-power possibilities. The chief objection to any power development on Stein creek is the lack of storage. Good summer power may be obtained.

The hydrographic station on Stein creek was established on September 22, 1913, by C. E. Richardson. The measuring section is located on the downstream side of the highway bridge, about half a mile from the mouth, and 3 miles from the Fraser river ferry above Lytton. All measurements are made by suspending the meter from a cable. A standard vertical staff gauge is fastened to the cribbing of the right abutment, on the downstream side. In the spring of 1912 a chain gauge was established, for use during high water; the datum of both gauges is the same, and is referred to three bench-marks.

Discharge Measurements of Stein Creek near Mouth, 1911, 1912 and 1913.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
1911.			Feet.	Sq.ft.	Ft. per sec.	Feet.	Sec.-ft.
ept. 22	C. E. Richardson.	1,048	57	203	$3 \cdot 4$	$0 \cdot 60$	655
March 27	C. G. Cline.	1,046	38	121	$1 \cdot 3$	-1.00	${ }^{1} 1.52$
May 30	C. G. C. \& B.	1,046	55	279	$4 \cdot 9$	1.75	1.360
July 26	C. G. Cline.	1,046	50	250	$4 \cdot 8$	$1 \cdot 70$	1,190
Sept. 6	C. G. C. \& K. G. C.	1,055	50	251	$4 \cdot 8$	1.55	1.195

Note.-1 Below zero of gauge.

SESSIONAL PAPER No. 25f
Monthly Discharge of Stein creek near Mouth for 1913.
(Drainage area, 130 square miles.)

Mosth.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
April	690	500	$\therefore ;$	1.1	$5 \cdot 02$	34,800
May.	2,970	${ }^{630}$	1,659	1:-	14.6	
June	4.800	1,590	2.817	21.7	24.1	167,000
July	2,110	1, twir	1,791	13.8	15.9	110.000
August	1,660	89	1,251	911	$11 \cdot 1$	86,900

Daily Gauge Heights and Discharges of Stein creek near Mouth for 1913.

Location.-Section 2, township 17, range 25, west 6th meridian.
 ber 31, 1912; January 1 to December 31, 1913.

Winter Conditions.-There are some short cold periods as a rule, but the river usually remains open throughout the year.

Gouge.-The gauge is a chain gauge with graduations marked on bridge rail. Daily readings are made by Miss Violet Curnow.

Channel.-The channel varies from 400 to a little over 500 feet in width, the flow ranging from 4,000 second-feet at low water to 110,000 second-feet at high stages. At high water the stream is 16 feet deeper than at low, while mean velocities range from 2 feet per second to 11 feet per second.

Discharge Measurements.-Measurements are made by cable suspension from the upstrean side of traffic bridge spanning the river at the town of Spences Bridge. ()wing to the extremely high velocities at high stages meterings are very difficult to ohtain. However, the discharge-gate-height curve is well defined.

Accuracy.-Results for 1913 bear a high degree of accuracy and are considered to be within 5 per cent of the truth.

Thompson River at Spences Bridge. (Metering Station.)

Thompson river from Kamloops to Lytton is 74 square miles.
(1) The North Thompson river rises at an elevation of 4,000 to 6,000 feet, about 10 miles south of Tête Janne C'ache. It mighi he noted here that within a radius of 5 miles may be found the source of the Fraser, the Canoe (a large tributary of the Columbia river) and the North Thompson river, the three streans which drain pratically the whole of British Colmbia. From its source. the North Thompson river flows south io Kamloops, where it joins the Fouth Thompenn river. The valley of the North Thompson is being opened up he the ('anadian Nomhern Padifie ralway, which runs beside the river from Téte Jaune Cache to Kamloops.

The mineral wealth of the country in this dramage is still unknown. Mie:a exists in large quantites in the upper valloy above Mad river. (iohd has heen found in various tributaries, and at present a mine is being worked at Louis rerek, about 30 miles from K ambons, which, if it turns out well, will be a hig asset to the surrounding country. Water-power may he developed on the river

SESSIONAL PAPER No. $25 f$

itself at Hells Gate, 160 miles up. A head of 30 feet may be obtained, and a minimum flow of 300 to 500 second-feet. Of the tributaries, the Barrier river, at the 35 -mile post, is the most important. A plant is mow hing installed wherehy the city of Kamloops will ohtain its light and power irom the Barrier. Good industrial powers of 1,000 to 2,000 horse-power, may be lowated on the following streams: Mad river, at the 97 -mile post: Tum Tum oreek, at the 112mile post: Samon or Porcupine ereek, at the 133-mile post: Hell Roming areek, at the 152 -mile post; Pyramid creek, at the 162 -mile post, (learwater river 70 miles from Kamloops.

From Tête Jaune C'ache to Kamloops by the river is about 250 miles, but by the C.N.R. it is less than 190. (All mile-posts are located by the C.N.R.) From Kamloops to Mad River, at the 97 -mile post the valley varies from half a mile to 1 mile in width. The soil is a sandy loam, and first-class land for fruit and mixed farming. Above Mad River the valley hecomes much narrower, and there are only about 16,000 acres of arable land. Irrigation is required up to the 100 -mile post, the precipitation varying from 7 inches at Kamloops to 40 inches at the Albreda Summit. Practically all the land has been taken up in the valley. There is very little large timber in the valley, except near the source, where several limits are held.

The streams and rivers above the 97 -mile post are devoid of fish, said to be due to the large amount of mica in the waters, and apart from a few bears, there is no game to speak of in the valley.

The gauging station on the North Thompson river is 18 miles from the mouth. Here the river is 500 feet wide, and the depth varies from 6 feet to 25 feet, The rise and fall of the river at this point is about 15 feet. The maximum discharge in 1912 was 50,000 second-feet in May. The minimum flow was 2,050 second-feet in March. Maximum for 1913 was (5.5.000 in June, minimum 33,000 in April.

The North Thompson river is navigable during the eummer from Kambops to the 92 -mile post, from the 112 -mile post to 125 -mile post and from $1: 37$ to 172 mile.
(2) As before stated, the North and South Thompson meet at Kamloops. Strictly speaking, the Thompson river rises in the shaswap lakes, and is only a flowing stream between (hase and Kitmoops, a distance of 40 miles. And it is a very slow flowing stream. The drop between the Shuswap lakes and Kamloops being only 15 feet. The valley between Kambone and (hase js from 1 mile to 3 miles wide and is very suitable for mixed farming and fruit growing.

The dramage is 400 square miles, and a large pereentage of this land may be cultivated or used for grazing purposes. The one great drawhack is the lack of water for irrigation.

The remaining 7,000 square miles of the South Thompson drainage are drained by the shuswap lakes. The chief feeders of this hody of water are the Adams river, Anstey river, Seymour river, Eagle river, Shuswap river, and Salmon river. The precipitation throughout the dramage of these streams arerages about 30 inches, the salmon river being the only one in the dre belt. The ditamriver is an ideal power stream, and alon drains a fertile amb well-timbered conmtry The Shuswap river has two good power sites on it, one below Sugar lake and the other below Mabel lake. Immense timber limits are held around Mabel and Sugar lakes. 'The Shuswap river drains the famous Okanagan valley from Armstrong north. The Salmon river drains the Cirand Prairie district so well known as a mixed farming and ranching country. For further information on these streams see the individual gazetteers and reports.

The gauging station on this river was installed at Chase, B.C., in 1911. The

$2.5 \mathrm{~F}-19 \frac{1}{2}$

The maximum flow during the two years was $36,000 \mathrm{c} . \mathrm{f} . \mathrm{s}$, and took place on March 1, 1912. The rise and fall of the river at this section is 10 feet.

The south Thompson is navigable during the summer. Steamers ply between Chase, Sicamous, Salmon Arm, Anstey Arm, and Seymour Arm.
(3) From Kamloops the river flows into Kamloops lake, which is about 20 miles long and from 1 mile to 2 miles wide. As the river leaves the lake the fall becomes greater, and in the 20 miles to Asheroft there is a drop of 200 feet. After leaving Asheroft the river flows through the Black canyon. Between Asheroft and Spences Bridge the river is very swift, and in the 25 miles there is a fall of 225 feet. Between Spences Bridge and Lytton the river is in a canyon practically all the way (30 miles). The fall in this distance is 317 feet. At Lytton the Thompson river discharges into the Fraser river. The Canadian Pacific Railway follows the left bank of the river from Kamloops, also from Chase to Lytton. The Canadian Northern Railway comes down the North Thompson and then follows the right bank practically all the way to Lytton. This eliminates any power possibilities.

There are good bench lands on both sides of the Thompson between Kamloops and Spences Bridge. The Asheroft district is famous for its potatoes. The other benches are practically the same soil, and equally as valuable. Lack of water is the great difficulty in cultivation all through this district. The precipitation is very small, not exceeding 10 inches.

The three largest tributaries of the Thompson river below Kamloops, are the Deadman, entering from the right, below Savona lake, the Bonaparte entering from the right at Asheroft, and the Nicola entering from the left at Spences Bridge, all drain rich agricultural districts and ranching countries. Practically the whole drainage below Kamloops and above Spences Bridge consists of a rolling-hill country unexcelled for ranching, and rich agriculturally where water can be obtained.

There is gold in the Thompson river, iron is prevalent in the Kamloops district, and three coal mines are working at Merritt in the Nicola valley.

The gauging station was established at Spences Bridge in October 1911, and continuous daily readings have been taken since. The river at this section is 400 feet wide and from 8 feet to 20 feet deep. The water is very swift, and never freezes in the winter. The maximum flow in 1912 was 90,000 c. f.s., and the minimum was 5,000 c. f.s.

The Thompson river drains the most settled part of the interior of British Columbia, with the exception of the lower Okanagan valley. The climate generally might be deseribed as hot and dry in the summer, a cold short winter, with little snow. The country is well supplied with game, and fishing is good in both large and small streams and lakes.

SESSIONAL PAPER No. 25 f
Monthly Discharge of Thompson River at Spences Bridge for 1913.
(Drainage area, 21,000 square miles.)

Month.	Discharge in Second-Feet.				Rux-Off.	
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
January	6,620	5,075	5, 730	$0 \cdot 27$	$0 \cdot 31$	352,320
Fehruary	5. 50	5,000	5,454	$0 \cdot 26$	11.2	302,900
Mareh	5,330	4,925	5,152	$0 \cdot 25$	0.29	316,800
Ipril.	23,200	5,240	11,749	$0 \cdot 56$	$0 \cdot 62$	699,100
May	73,600	23,200	42,460	$\because \cdot$	2.33	2,610,700
June	110,420	78,000	95,976	4.9	$5 \cdot 10$	5,711,000
July	86,800	52,070	64,703	3.04	$\therefore \mathrm{a}+\mathrm{i}$	3,978,000
- Iugust	50,000	35,400	42,270	$2 \cdot 01$	2-3	2,599,000
Scptember.	34, 800	22,740	29,205		1.3.	1,737,500
Wetober .	22,280	14,820	17,013	(1.) 1	0.93	1,045,900
Nusembter	14.400	9,950	11,811	11. iti	$0 \cdot 62$	-02,600
I enermber	9,390	5,750	4,355	11.1	0.23	267,780
Year.	110,420	4.9	27,990	1.). 94	$18 \cdot 13$	$20,323,600$

Discharge Measurements of Thompson River at spences Bridge, 1913.

Daily Gauge Heights and Discharges of Thompson River at Spences Bridge for 1913.

Day.	January		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec- -ft .	Feet.	Nec.-ft.	Feet.	Sec.-ft	Feet.	Sec.ft.	Feet.	Sec.-ft.	Fect.	Sec.-ft.
1	$2 \cdot 4$	6,620	$1 \cdot 9$	5,870	1.3	5,420	$1 \cdot 3$	5,240	6.8	22,280	$15 \cdot 5$	78,000
2	$2 \cdot 4$	6,620	$1 \cdot 6$	5,530	$1 \cdot 4$	5,330	1.4	5,330	3.9	22,740	$16 \cdot 0$	82,400
3	$2 \cdot 3$	6,450	1.4	5,330	$1 \cdot 4$	5,330	$1 \cdot 4$	5,330	7-0	23,200	$16 \cdot 6$	87,680
1	$2 \cdot 3$	6,450	$1 \cdot 4$	5,350	$1 \cdot 4$	5,330	1.4	5,330	$7 \cdot 0$	23,200	$17 \cdot 2$	92,980
5	$2 \cdot 3$	6,290	$1 \cdot 3$	5,210	$1 \cdot 4$	5,330	1.4	5,330	$7 \cdot 0$	23,200	$17 \cdot 4$	94,800
6	$2 \cdot 0$	6,000	$1 \cdot 0$	5,000	$1 \cdot 3$	5,240	1.5	5,425	$7 \cdot 0$	23,200	$17 \cdot 6$	96,620
7	$2 \cdot 0$	6,000	$1 \cdot 3$	5,000	$1 \cdot 4$	5,330	1.5	5,425	$7 \cdot 0$	23,200	$17 \cdot 8$	98,480
S	1.8	5,750	$1 \cdot 6$	5,530	$1 \cdot 4$	5,330	1.5	5,425	$7 \cdot 1$	23,660	$17 \cdot 8$	98,480
9	$1 \cdot 6$	$5 \cdot 5.51)$	1.7	5,640	$1 \cdot 3$	5,240	$1 \cdot 6$	5,530	$7 \cdot 5$	25,500	$17 \cdot 8$	98,460
$11)$	$1 \cdot 4$	5,330	1.8	5, 7.50	$1 \cdot 4$	5,330	$1 \cdot 6$	5,530	$5 \cdot 1)$	27, 910	$18 \cdot 1$	101,220
11	$1 \cdot 1$	5,075	1.7	5,640	$1 \cdot 4$	5,330	1.6	5,530	$8 \cdot 4$	29,800	$18 \cdot 6$	105,820
12	$1 \cdot 4$	5,330	1.7	5,640	$1 \cdot 3$	5,240	1.7	5,810	$8 \cdot 7$	31,300	$18 \cdot 9$	110,420
13	$1 \cdot 4$	5,330	$1 \cdot 6$	5,530	$1 \cdot 3$	5,240	1.9	5,670	$9 \cdot 1$	33,320	$19 \cdot 1$	110,420
14	$1 \cdot 6$	5,330	1.5	5,425	$1 \cdot 3$	5,240	$2 \cdot 1$	6,140	$9 \cdot 5$	35,400	$19 \cdot 0$	109,500
15	$1 \cdot 6$	5,330	$1 \cdot 4$	5,330	$1 \cdot 2$	5,155	$2 \cdot 6$	7,000	9.7	36,440	$18 \cdot 8$	107,660
16.	1.5	5,425	$1 \cdot 6$	5,530	$1 \cdot 0$	5,000	$3 \cdot 1$	8,270	$10 \cdot 0$	38,000	$18 \cdot 7$	106,740
17	$1 \cdot 5$	5,423	$1 \cdot 5$	-5, 42.5	$0 \cdot 9$	4,925	$3 \cdot 3$	8,850	11.4	40,220	$18 \cdot 4$	103,980
1.5	1.4	5,330	$1 \cdot 5$	5,425	0.9	4,925	$3 \cdot 5$	9,390	$10 \cdot 7$	41,900	$18 \cdot 0$	100,300
19	$1 \cdot 16$	5,530	1.5	5,425	$0 \cdot 9$	4,925	$4 \cdot 0$	10,850	$11 \cdot 1$	44,200	$17 \cdot 5$	95,710
$21)$	$1 \cdot 6$	5,530	$1 \cdot 5$	5,425	$0 \cdot 9$	4,925	$4 \cdot 8$	13,650	11.1	44,200	$17 \cdot 3$	93,890
21	$1 \cdot 7$	5,640	$1 \cdot 6$	5,530	1.0	5,000	$3 \cdot 7$	17,340	11.8	48,670	$17 \cdot 1$	92,050
22	$1 \cdot 9$	5,870	$1 \cdot 7$	5,640	$1 \cdot 0$	5,000	$6 \cdot 1$	19,060	$12 \cdot 7$	55,000	$17 \cdot 1$	92,080
23	$1 \cdot 8$	5,750	$1 \cdot 6$	5,530	$0 \cdot 9$	4,925	$6 \cdot 4$	20,440	13.5	61,170	$17 \cdot 1$	92,080
21	$1 \cdot 7$	5,640	$1 \cdot 5$	5,425	0.9	4,925	$6 \cdot 8$	22,230	$13 \cdot 7$	62,770	$17 \cdot 1$	92,080
2.$)$	$1 \cdot 6$	5,530	1.5	5,425	$1 \cdot 0$	5,000	$7 \cdot 0$	23,200	$13 \cdot 9$	64,420	$17 \cdot 0$	91,200
26	$1 \cdot 6$	5,530	$1 \cdot 4$	5,330	$1 \cdot 1$	5,075	$7 \cdot 0$	23,200	$14 \cdot 1$	66,080	16.9	90,320
27	$1 \cdot 6$	5,530	1.4	5,330	$1 \cdot 2$	5,155	$7 \cdot 11$	23,200	$14 \cdot 2$	66,910	$16 \cdot 9$	90,320
25	1.7	5,640	$1 \cdot 3$	5,240	$1 \cdot 2$	5,155	$7 \cdot 0$	23,200	14.2	66,910	15.9	90,320
29	1.7	5,640			$1 \cdot 2$	5,155	$6 \cdot 9$	22,740	$14 \cdot 3$	67,740	16.8	89,440
30	$1 \cdot 5$	5,750			$1 \cdot 2$	5,155			$14 \cdot 8$	70,240	$16 \cdot 6$	87,050
31.	$1 \cdot 8$	5,750			$1 \cdot 3$	5,240			$15 \cdot 0$	73,600		

SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of Thompson River at Spences Bridge for 1913-Continued.

THOMPSON RIVER AT KAMLOOPS.
Location.-Section 6, township 17, range 20, west 6th meridian, just below confluence of the North and South 'Thompson rivers.

Records Available.-April 1 to September 30, 1911; March 24 to December 31, 1912; April 1 to December 31, 1912.

Winter Conditions.- River generally freezes over completely about 1st of January and remains so until early in March. During 1913-14 the river remained practically open throughout the winter. On March 5, 1912, a metering under ice cover showed a discharge of 3,980 second-feet. This represents the normal runoff during winter months.

Gauge.-A vertical staff gauge read daily by Ceorge Clapperton.
Channel.-The width of the chamel varies from 100 to 800 feet, while at high water the depth is from 12 to 17 feet greater than at low stages.

Discharge Measurements.-The flow is well defined for a range of discharges from 4,000 to 90,000 second-feet. The stream, as a rule, reaches a maximum of over 100,000 second-feet. The peak of the flood flow is usually about the 20th of June, though this may vary a couple of weeks owing to climatic conditions.

Accuracy. - The accuracy on the whole is of a high degree, and except for the short period during which the flow is greater than 90,000 second-fect, the results as attached are considered to be within 5 per cent of actual conditions.

THOMPSON RIVER AT KAMLOOPS.

The Thompson river has its source at the junction of the North and South Thompson rivers at Kamloops, at an elevation of 1,130 feet and discharges into the Fraser river at Lytton at an elevation of 464 feet high water or 417 feet low water.

The drainage area above Kamloops is 14,400 square miles.
The gauge used is the British Columbia Meteorological Service gauge at the lower traffic bridge at Kamloops, and daily readings have been taken by this survey continuously since September 8, 1911.

Readings are available for this gauge since the summer of 1910 , but owing to two changes of datum of uncertain amount, it was not considered advisable to make use of readings except those taken by this survey.

The river rises from the end of March to the middle of June, from 12 to 17 feet, receding slowly until December 1 , when freeze-up generally takes place and remains fairly constant till the break-up in March. At low water the mean velocity is about 0.5 feet per second, at high water about 5 feet per second.

Discharge Measurements of Thompson River at Kamloops 1911-12, 1913.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity	Gauge Height.	Discharge.
1911.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
Sept.	C. E. Richardson	1,048	$7 \cdot 15$	11,600	1.90	$4 \cdot 37$	22, 010
Oct. 3		1,048	$7 \cdot 163$	10,100	1.36	$2 \cdot 50$	13, 7100
Dec. 1.	"	1,048	6.95	8,650	0.83	0.50	7,150
1912.							
Mar. 5	"	1,057	$6 \cdot 85$	8,030	0.50		$3.9 \times 1{ }^{1}$
Apr. ${ }_{0}$	".	1,057	6.90 7.68	8,037	(1).51	-0.20 8.50	4.099
July 22	"	1,048	$7 \cdot 68$	13,100	2.74	$7 \cdot 07$	35.911
Aug. 23.	"	1,048	$7 \cdot 65$	12,300	$2 \cdot 70$	6. 20	33,400
1913.							
June 6	H. J. Keys.	1,057	$7 \cdot 83$	17,540	$4 \cdot 95$	$13 \cdot 1$	86, 5 91)

Note.- ${ }^{1}$ Ice cover.

SESSIONAL PAPER No． $25 f$

Monthly Discharge of Thompson River at Kamloops，for 1913.
（Drainage area， 14,400 square miles．）

Month．	Discharge in Second－Feet．				IUT－OfF。	
	Maximum．	Minimum．	Nean．	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { litile. } \end{gathered}$	Depth in inches on Drainage area．	Total in acre－feet．
April	16．600	1，900	9，370	13	1）． 72	557，500
Maty	66， 800	15，800	31，26i）	$\because 17$	$\because \cdot 50$	1． $12+$ f，fim
June	100，500	70，200	55，（10）	5 ！ 1 ！	（i） 5 5	5，057，800
July．	74，500	41，300	54，34．	$3 \cdot 7$	4.35	3，335， 500
． A unust	40，600	27，900	33，90\％	\because	2.73	\because（69）， 8040
Septembrer	29，600	17，100	22，400	1.5 .5	1.73	1，332，900
Wetuber	17，500	11，800	13，743	11.	$1 \cdot 11$	842，400
November	12，200	－． 1000	9．ロー	こい	1）． 76	5St，900
I）ecomber	8，700	5，500	6，974	（）．4s	0． 55	428，570
The period．	100.500	1，900	29，6．34	$2 \cdot 06$	$21 \cdot 03$	16，158，070

Note，－Accuracy＂A＂．

Daily Gauge Heights and Discharges of Thompson River at Kamloops for 1913.

Daily Gatge Heights axd Discharges of Thompson River at Kamloops for 1913-Continued.

Dis	July.		August		September		October		November.		December.	
	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge.	Gauge Height.	Di: charge.	Gauge Height	Discharge.	Gauge Height.	Discharge
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sen, -ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	11.7	$74,500$	$7 \cdot 2$	$38,500$	$5 \cdot 5$	$\begin{array}{r}27,900 \\ \hline 26.300\end{array}$	$3 \cdot 4$	17.500	$2 \cdot 1$	12,200	$1 \cdot 0$	$8,100$
3.	11.6	73,600		39,200	5.0	25,200	$3 \cdot 2$	16,600	$2 \cdot 1$	12,200	1.2	8,700
4	11.2	70,200	$7 \cdot 4$	39,900	4.9	24,600	$3 \cdot 1$	16,200	$2 \cdot 0$	11,800	1.2	8,700
5	$10 \cdot 8$	66,800		39,200	4.9	2£,100	$3 \cdot 0$	15,800	$2 \cdot 0$	11,800	1.0	8,100
(i)	10.3	62,500	$7 \cdot 5$	40,600	4.7	23,600	$2 \cdot 4$	14,900	1.8	11,000	$1 \cdot 1$	8,400
\%	$10 \cdot 0$	60,000	7.3	39,200	5.8	29,600	$2 \cdot 6$	14,100	1.8	11,000	1.1	8,400
8	(1)	58, 200	7.2	38,500	$5 \cdot 2$	26,300	$2 \cdot 6$	14, 100	1.7	10,600	1.0	8,100
10	9.19	59,100	$7 \cdot 2$	38,500	4.2	21,200	$2 \cdot 4$	13,300	1.8	11,000	1.0	8,100
10.	9.j	55, 800	$7 \cdot 0$	$37 \cdot 100$	4.5	22,600	$2 \cdot 2$	12,500	$1 \cdot 5$	9,900	$0 \cdot 4$	7,400
11	$9 \cdot 4$	55,000	7.0	37,100	$4 \cdot 9$	24,600	$2 \cdot 2$	12,500	1.5	9,900	0.7	7,000
12	$9 \cdot 5$	55, 800	6.7	35,000	$4 \cdot 7$	23,600	$\cdots \cdot 1$	12,200	1.9	11,000	0.7	7,000
14.	$9 \cdot 3$	jt, 200	7.0	37,100	$4 \cdot 6$	23,100	2.0	11,800	$1 \cdot$.	9,900	0.7	7.010
15	$8 \cdot 4$	50,900	6.8	35, 700	4.7	23,600	2.3	12,900	1.5	9,900	$0 \cdot 7$	7,000
16		50,200	10.5	33,700	$4 \cdot 6$	23,100	$3 \cdot 0$	15,800	$1 \cdot 3$	9,100	0.7	7,000
17	\therefore -	17.4.1.	46.3	[2, +6,	$4 \cdot 4$	22, 14.1	$\underline{2.7}$	11..ju)	1.2	\therefore, 7 (1)	11.7	7.017
18	$\checkmark 1$	47,100	6.0	30, 500	$4 \cdot 2$	21,200	2.8	14,900	1.5	9,900	$0 \cdot 7$	7,000
19	\therefore	45,600	6.0	30,800	$4 \cdot 4$	22,100	$2 \cdot 5$	13,700	1.4	9,500	$0 \cdot 6$	6,700
20.	$\therefore 3$	46,300	6.0	30,800	4.5	22,600	2.3	12,900	1-2	8,700	$0 \cdot 6$	6,200
21	$\cdots 4$	47,100	6.0	30,800				12,500			$0 \cdot 5$	
22.	$8 \cdot 7$	4: 414	5.8	29,600	$4 \cdot 1$	20,800	$2 \cdot 5$	13,700	1.2	8,700	0.5	6,400
23.	8.8	50,200	5.7	29,000	$4 \cdot 0$	20,300	$2 \cdot 2$	12,500	1.2	8,700	0.5	6,400
24	\bigcirc	50,900	$5 \cdot 7$	29,000	$3 \cdot 8$	19,400	$2 \cdot 2$	12,500	1.2	8,700	$0 \cdot 4$	6, 190
25.	$3 \cdot 9$	50,900	$5 \cdot 8$	29,600	$4 \cdot 1$	20, 500	$2 \cdot 3$	12,900	1.2	8,700	U.3	5,800
26	5.5	50,200	6.0	30,800	3.4	19,400	$2 \cdot 1$	12,200	1.2	8,700	$0 \cdot 2$	5,500
2	$8 \cdot 7$	49,400	5.9	30,200	$3 \cdot 6$	18,400	$2 \cdot 5$	13,700	$1 \cdot 2$	8.700	$0 \cdot 2$	5.500
28	$8 \cdot 1$	47, 100	5.1	29,600	$3 \cdot 3$	17,100	$2 \cdot 3$	12,900	$1 \cdot 1$	8,400	$0 \cdot 2$	5.500
29	3.11	44,100	5.7	29,000	$3 \cdot 3$	17,100	$2 \cdot 3$	12,900	$1 \cdot 1$	8,400	$0 \cdot 2$	5,500
30	8.0	44,100	\%.	27,900	$3 \cdot 4$	-17,500	$2 \cdot 3$	12,900	$1 \cdot 0$	8,100	$0 \cdot 2$	5,500
31.	- 11	41,300	5.7	29,000			$2 \cdot$	12,500			$0 \cdot 2$	5,500

NORTH THOMPSON RIVER.

Location.-Section 23, township 22, range 17, west 6 th meridian., above the "Hefferly riffle."

Records Available.-April 1, 1912, to December 20, 1912; April 13, 1913, to December 31, 1913.

Winter Conditions.-Stream is usually under ice cover from January 1 to April 1. Meterings made of the flow under ice cover showed on Febuary 9, 1912. a discharge of 2,120 second-feet, and on March 12 a discharge of 1.0 fite second-feet.

Gauge.-A chain gauge is used and daily readings are made by E. Sutton.
Channel.-The channel is about 400 feet wide, and the water is 10 to 15 feet deepere at high then at low stages. mean velocitios rarying from o .: in in . 3 feet per second.

Discharge Measurements.-The flow is well defined by seven well-distrihuted meter measurements. Comsiderable differlty is encometered, howerer. in securing meterings of maximum flow.

Accuracy.-The accuracy, on the whole, is fairly high (within 10 per cent).

NORTH THOMPSON IRIVER.

For general description of North Thompson river see Thompson river at Spences Bridge.

SESSIONAL PAPER No. 25f

Discharge Meastrements of North Thompen River near Black Pines P. O. 1912 and 1913.

Date.	Hydrographer.	Meter No.	Width.	Area of section.	Mean Velocity".	Gauge Height.	Discharge.
1912.			Feet.	Sti. ft.	Ft. persec	Feet.	Sec.-ft.
Feb. 9	C. G. Cline.	1046	380	1,234	0.5	$10 \cdot 0$	2,120*
Mar. 12	C. Richardson	14	300	4, (1)21	(1). 39		1,560
April 19.	C. G. Cline.	1046	3×0	5,240	$1 \cdot 36$	11.6	7,150
Jume	K心- D D.nn	$104 \pm$	400	-	$3 \cdot 73$	$16 \cdot 8$	29,025
April 12.	Keys and Cline.	1037	390	4.750		$10 \cdot 3$	3,330
J.h. 1913.	Keys and Chisholm.	1037	410	11,950	5-2	-: -	62,620
July 22.	H.J. E. Keys........	1057	420	7,440	$\therefore \therefore$	$20 \cdot 2$	34,100

- Ice conditions.

Monthly Discharge of North Thompson River near Cooney's Ranch for 1913.
(Drainage area, 7,000 square miles.)

		Discharge in Second-Feet.				IRCN-Off.	
	-	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	Total in acre-feet.
1-7)		15,060	3,300	7,953	1-1 ${ }^{\text {P }}$	12	474, 500
11.1		55,650	9,950	24,929	3,5is	$1 \cdot 10$	1,531,000
1:		65,360	49,980	57, 633	2.23	-	3,427,400
July.		52,940	33,990	41,5i4	5,95	6, 29	-,576,300
1. $\because \cdot \cdots$		41,160	30,9>0	35, 821	$\therefore 1$	$5 \cdot(11)$	-2,201,300
		36,040	21,500	26,560	$3 \cdot 81$	$4 \cdot 2$	1,600,300
October...		22,900	15, 820	15,766	2.65	3,09	1,156,000
		16,580	13,160	14,110	2.01	\cdots	-39,010
1), 1 an =		13,160	9,250	11,367	$1 \cdot 62$	1.810	701,000
		65,360	3,300	26,591	3.80	38.81	14,507,500

5 GEORGE V., A. 1915
Dally Gauge Heights and Discharges of North Thompson River 1 mile above Jamieson Creek for 1913.

SESSIONAL PAPER No． $25 f$
Daily Gauge Heights and Discharges of North Thompson River 1 mile above Jamieson Creek for 1913．－Continued．

U11．	July．		August．		September．		October．		Ňovember．		December．	
	$\begin{gathered} \text { Gauge } \\ \text { Heisht } \end{gathered}$	Dis－ charee	（isuge Height．	Dis－ charge	(iauge Heroht	Dis－ charge	Gauge Height．	Dis－ rinenen	$\begin{aligned} & \text { li.n me } \\ & \text { Henuht } \end{aligned}$	Dis－ charge．	Gauge Height	I）i－－ charge
	I eet．	Sec．－it．	Feet．	Sue． ft ．	Feet．	$\therefore \mathrm{Se}-\mathrm{ft}$	Feet．	Sec．-ft ．	Feet．	Sec．－ft．	Feet．	Sec．－ft．
1	22.4	52，160	18．2	33，560	17.8	$\therefore 1,5+1$	15.1	21 ， 000	141	16，580	$13 \cdot$	1：3．1m
2	$22 \cdot 6$	52，940	1－1	33，130	17.3	29．4！＂！	$15 \cdot 2$	20， 910	1＋＂	16，200	13：	1． $\mathrm{i}, 1 \mathrm{~m}$
3	－1．	49，520	1．7	3．5－1111	17.11	2－1111	$15 \cdot 1$	20,500	$13:$	15.820	1．：－1	12． 211
\pm	21.1	47.201	$19 \cdot 1$	37.141	$17:$	29． 26	15.11	21）． 1101	$13 \cdot$	1．5． tal $^{\text {a }}$	$1: 1 \cdot 1$	12．スハ
5	21.11	46，000	19．2	ふ－，いいい	$17 \cdot 6$	30，980	$14 \cdot 9$	19，620	13 －	15，440	$13 \cdot 0$	12． 4 （1）
6	$20 \cdot 4$	43，360	$19 \cdot 1$	3－ 3 （1）	15.8	36,040	14．7	18， 8 （tic）	1：10	14.650	1：30）	12．1／4
7	19.1	41．1til	$19 \cdot 7$	411.2011	17 i	81． 310	$11 . \mathrm{i}$	1．1．11	13 i	11．1．011	$12 \cdot 9$	12.11 .81
s	21.	4．5． 120	$19 \cdot 8$	411．-211	17.1	30.120	$11 \cdot 7$	1－．$!1$	$13:$	11．が	$1 \because \cdot 9$	12.11511
4	21.9	4．）．jply	19.9	11．14i）	$17 \cdot 11$	－，fl11	$14 \cdot 3$	17．．\％	13 ；	1＋．31．	1．：0	12，4010
10	19.4	\＄1，1\％11	119．1\％	339.411	16．	27.540	$14 \cdot 2$	16．＇H．1	13.	14．．．＇＂＇	$12 \cdot 9$	12.050
11.	$20 \cdot 0$	41．finl	$19 \cdot 3$	35，520	16.7	27.110	$14 \cdot 1$	16，580	1．i	14．314）	$12 \cdot 9$	12，050
12	210.4	43,36	119．1	3）． 91610	$16 \cdot 1 i$	26．0．01	14.0	11i． $2 \cdot \cdots 1$	13%	11．， 1	12！	12．11\％
13	11.	40.720	19． 5	$8{ }^{3}$	16.5	26.250	1：$!$	1．9，－	1.31	1 \because いい	$12 \cdot$	11．7川1
14	119．7	4リ，ごい	19.7	41，2いい	$11^{\prime} \cdot 6$	2ti，（in）	$14 \cdot 9$	19， 620	13 t	1．3，y2u		11． C （111
15	$19 \cdot 1$		$19 \cdot 1$	3－！！＋ill	16．5	26，250	15\％	ㄴ．．911	$13 \cdot 1$	13，020		11． 7×1
16	$19 \cdot 5$	39,400	$111 \cdot 1$	37.640	1ti． 4	2．）いご1	15.3	21.300	134	13，920		11，700
17.	14.9	36，470	18．15	35，180	$11 \mathrm{i} \cdot 3$	25，390	1.56	2．，京以	13．3	13.540		11．710
1	$18 \cdot 6$	35，180	14．2	33，560	16．3	25.390	15.5	22.100	1．3．3	13，54（）		11.700
19	18.7	3．， 610	18．2	33，560	16.7	27，110	14.6	い．1．1	1：3．3	13.540		11， 700
20	$18 \cdot 8$	36.040	18． 1	33，130	16．	27，540	14.5	18，100	$13 \cdot 3$	13．540		11.700
21	$19 \cdot 2$	38，080	18.0	32，700	16.7	27.110	$14 \cdot 3$	18．100	$13 \cdot 2$	13， 160	12，	11．700
22	14．	40，720	$17 \cdot 5$	31，840	$16 \cdot 6$	26，680	14.5	18，100	1．： 2	13，160	12，	11.14 HI
23	211.4	43，360	$17 \cdot 10$	3い！！13	16.4	2．）． 21	14.5	1，11，11	13．2	13，160	121	10.300
24	20.5	4.3 .1111	$1 \cdot 1$	33，130	$16 \cdot 1$	21，530	14.5	18，1（4）	1．： 2	13， 160	1－3	9.950
25	21.9	45，560	1い．2	33，560	$1.5 \cdot 8$	23，300	14．5	18，100	13．2	13，160	121	9，250
26	$20 \cdot 6$	44，240	18.3	33，990	15.7	29， 1111	14．5	18，100	13：3	13.540	$12 \cdot 1$	9，250
27	$19 \cdot 9$	41，160	1，？	33，550	15.5	22.100	14.5	18．100	$13 \cdot 3$	13．540	12：	9，600
28	$19 \cdot 6$	39，840	18．2	33，560	$15 \cdot 1$	21，700	14.1	17， 220	1：3 3	13，540	123	9，950
29	$19 \cdot 3$	38，520	18.11	32，700	$1.5 \cdot 4$	21，700	$14 \cdot 4$	15．20	13．2	13，160	$12:$	
30	18.9	36，470	18．2	33，560	$1.5 \cdot 6$	22，500	11.3	17：34	132	$13 \cdot 160$	に2	9．filli
31	$18 \cdot 3$	33，990		32，700			$14 \cdot 2$	16，960			121	9，250

THOMPSON IRIVER NEAR CHASE．

Location．－The station is located in township 21，range 13，west 6th meridian， just below Little Shuswap lake， 1 mile from Chase，at the Adams River Lumber Company＇s wharf．

Records Available．－May to July，1911；April to December，1912；April to Derember，1913．

Winter Conditions．－The winter conditions in this district are farly severe， the thermometer going as low as $\left(-20^{\circ} \mathrm{F}\right.$ ．）．The snowfall is about 6 feet．The river generally freezes over or is affected by ice conditions for two or three months each winter．

Gauge．－A vertical staff gauge is used and read by Mr．F．Cook of the Adams River Lumber Company，Chase，B．C．

Channel．－Immediately above the section the river broadens out into Little Shuswap lake．Below the section the river is straight for 200 yards where there is a slight riffle in low water．The river is navigable．

Discharge Measurements．－Eleven well distributed measurements have been made in 1911－12－13．Neasurements are made from temporarily established cable and boat．

Accuracy．－Accurate gauge readings are obtained，conditions for metering are favourable；these results should be within 10 per cent．

5 GEORGE V., A. 1915
Discharge Measurements of Thompson River near Chase 1911-12-13.

Date.	Hydrographer.	Meter No.	Width.	Area of section.	Mean velocity.	Gauge height	Discharge.
1911.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec. ft.
Oct. 20	C. E. R.	1048	415	4,450	$1 \cdot 30$	$0 \cdot 8 \frac{1}{2}$	5,780
$\text { Mar. }{ }^{1912 .}$	"	1047	325	3,710	$0 \cdot 68$	0. 10	2,384
May 15	"	1047	465	6,480	$5 \cdot 53$	$5 \cdot 5$	19,600
June 13.	"	1048	485	7,190	$4 \cdot 24$	$7 \cdot 2$	30,800
June 21.	"	1047	495	7,600	$4 \cdot 46$	8.0	33,800
July 24	"	1047	460	6,200	$5 \cdot 18$	${ }_{5}^{5 \cdot 0}$	19,600
Sept. $\overline{3}$	"	1049	445	5,180	2-25	$2 \cdot 98$	11,600
$M_{\text {May }} 1013$.		1048	460	5,780			
June 10.	H.J.E.K.	1057	$\stackrel{4}{400}$	8,390	4,50	${ }_{9 \cdot 52}$	38,100
July -		1057	500	7,850	$4 \cdot 10$	$8 \cdot 0$	32,400
Oct 2	K. G. C.	10.55	420	4.378	1.51	1.721	6,627

Monthly Discharge of South Thompson River near Chase for 1913.
(Drainage area, 7,000 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
April.	9,970	2,800	5,330	$0 \cdot 76$	$0 \cdot 85$	317,000
May.	26,000	10,200	15,119	$2 \cdot 16$	$2 \cdot 49$	928,000
June.	48,300	27,000	41,740	5.96	$6 \cdot 65$	2,480,000
July .	39,200	22,100	28,987	$4 \cdot 14$	4.77	1,780,000
August.	21,200	13,000	15,319	$2 \cdot 19$	$2 \cdot 52$	941,000
September	12,600	9,660	11,364	$1 \cdot 62$	1.81	676,000
October...	9,360	6,970	7,660	1.09	1.26	471,000
November	6,970	5,850	6,314	(1) (1)	1.00	376,000
December.	6,060	4,140	5,170	$0 \cdot 74$	$0 \cdot 85$	318,000

Note.-First eleven days in April are estimated.

SESSIONAL PAPER No. $25 f$
Daily Ciage Heights and Dischargen of couth Thompoon River near Chase for 1913.

Daily Gafge Heights axd Discharges of South Thompson River near Chase for 1913.-Continued.

DAy.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge	G:auge Height.	Discharge.	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec. -ft .	Feet.	Sec.-ft.	Feet.	Sec-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1	$9 \cdot 1$	39,200	$5 \cdot 6$	21,200	$3 \cdot 5$	12,600	$2 \cdot 5$	9,360	$1 \cdot 6$	6,970	$1 \cdot 2$	6,060
2	$9 \cdot 0$	38,600	$5 \cdot 3$	19, (10)	3:4	12,200	$2 \cdot 5$	9.360	$1 \cdot 6$	6,970	$1 \cdot 2$	6,060
3	8. 8	37,500	$5 \cdot 1$	18,900	$3 \cdot 3$	11,900	$2 \cdot 4$	9,070	$1 \cdot 6$	6,970	$1 \cdot 2$	6, 1169
4	$8 \cdot 7$	36,900	$5 \cdot 11$	18,400	$3 \cdot 3$	11,900	$2 \cdot 4$	9,070	1.5	6,730	1.2	6,060
5	- 6	36,400	$4 \cdot 9$	19,000	$3 \cdot 3$	11,990	$2 \cdot 3$	8,790	1.5	6,730	$1 \cdot 2$	6,060
6	8. 4	35,300	$4 \cdot 9$	18,000	$3 \cdot 4$	12,200	$2 \cdot 2$	8,510	1.5	6,730	$1 \cdot 1$	5,850
7	$8 \cdot 0$	33, 1019	$4 \cdot 7$	17,200	$3 \cdot 4$	12,200	$2 \cdot 1$	8,240	$1 \cdot 4$	6,500	$1 \cdot 1$	5,850
d	$7 \cdot 9$	32,600	$4 \cdot 5$	16,400	$3 \cdot 4$	12,200	$2 \cdot 1$	8,240	$1 \cdot 7$	6,500	1.0	5,640
9	$7 \cdot 8$	32, 100	$4 \cdot 4$	16,000	$3 \cdot 4$	12,200	$2 \cdot 0$	7,980	1.4	6,500	1.0	5,640
10	$7 \cdot 6$	31,100	$4 \cdot 3$	15,600	$3 \cdot 4$	12,200	1.9	7,720	$1 \cdot 3$	6,280	$1 \cdot 0$	5,640
11	$7 \cdot 5$	30, 6140	$4 \cdot 2$	15,200	$3 \cdot 3$	11.900	1.8	7.470	$1 \cdot 3$	6,280	0.9	5,440
12	$7 \cdot 4$	30,000	$4 \cdot 2$	15,200	$3 \cdot 3$	11,900	1.9	7,720	$1 \cdot 3$	6,280	$0 \cdot 9$	5.440
13	$7 \cdot 2$	29,000	$4 \cdot 1$	14,800	$3 \cdot 3$	11.9'0)	1.9	7.720	$1 \cdot 3$	6,280	0.8	5,240
14	$7 \cdot 1$	28,500	$4 \cdot 1$	14.800	$3 \cdot 3$	11,900	1.8	7.470	1.3	6,280	0.8	5,240
15	$7 \cdot 0$	28,600	$4 \cdot 0$	14.400	$3 \cdot 3$	11,900	$1 \cdot 3$	7,470	$1 \cdot 3$	6,280	0.8	5,240
16	$7 \cdot 1$	28,500	$4 \cdot 0$	14,400	$3 \cdot 2$	11,500	1.3	7,470	1.3	6,280	0.8	5,240
17	$7 \cdot 0$	28,000	$4 \cdot 0$	14,400	$3 \cdot 2$	11,500	1.7	7,220	$1 \cdot 3$	6,280	$0 \cdot 7$	5.050
18	6.9	27,5110	$4 \cdot 0$	14.40)	$3 \cdot 1$	11,1010	1.7	7,201	$1 \cdot 3$	6, 2901	11.7	5.15 .51
19	$6 \cdot 8$	27,000	$4 \cdot 0$	14,400	$3 \cdot 1$	11,100	1.7	7,220	$1 \cdot 3$	6,280	$0 \cdot 6$	4,860
20.	$6 \cdot 7$	26,500	$4 \cdot 0$	14,400	$3 \cdot 1$	11,100	$1 \cdot 7$	7,220	$1 \cdot 2$	6,060	$0 \cdot 6$	4,860
21.	$6 \cdot 6$	26.000	$4 \cdot 0$	14,400	$3 \cdot 1$	11,100	1.7	7,220	1.2	6.060	$0 \cdot 5$	4.680
22	${ }^{6} \cdot 5$	2.5 .500	$3 \cdot 9$	14,000	$3 \cdot 0$	10,800	$1 \cdot 6$	6,970	$1 \cdot 2$	6,060	0.5	4,680
23.	$6 \cdot 4$	25,000	$3 \cdot 9$	14,000	$2 \cdot 9$	10,500	$1 \cdot 6$	6,970	1.2	6.060	$0 \cdot 5$	4,680
24.	$6 \cdot 3$	$\cdots 4.5010$	$3 \cdot 8$	13,700	$\cdots \cdot 9$	10,500	1-6	6,970	$1 \cdot 2$	6. (1til)	$0 \cdot 5$	4,680
25.	$6 \cdot 2$	24,000	$3 \cdot 8$	13,700	$2 \cdot 9$	10,500	$1 \cdot 6$	6,970	$1 \cdot 2$	6,060	$0 \cdot 5$	4,680
26	$6 \cdot 2$	24.000	3.7	13.300	$2 \cdot 8$	10,200	$1 \cdot 6$	6,970	1.2	6.060	0.4	4,500
27	$6 \cdot 1$	23.500	$3 \cdot 7$	13,300	$2 \cdot 8$	10,200	$1 \cdot 6$	6,970	$1 \cdot 2$	6,060	11.4	4,500
28	$6 \cdot 0$	23,000	$3 \cdot 7$	13,300	$2 \cdot 8$	10, 20, 0	1.6	6,970	$1 \cdot 1$	5,850	$0 \cdot 4$	4,500
29	$5 \cdot 9$	22,500	$3 \cdot 7$	21,300	$2 \cdot 7$	9,970	$1 \cdot 6$	6,970	$1 \cdot 1$	5.850	$0 \cdot 3$	4,320
30.	$5 \cdot 8$	22,100	$3 \cdot 6$	13,000	$2 \cdot 6$	9,660	$1 \cdot 6$	6,970	$1 \cdot 1$	5,850	$0 \cdot 3$	4,320
31	$5 \cdot 5$	22,100	$3 \cdot 6$	13,000			$1 \cdot 6$	6,970			$0 \cdot 2$	4,140

Tranquille river.

Location.-Section 36, township 20, range 19, west 6 th meridian; a mile above Tranquille sanatorium.

Records Available.-July 4, 1911, to October 21, 1911; March 29, 1912, to September 7, 1912; May 1, 1913, to October 31, 1913.

Winter Conditions.-Climatic conditions practically the same as at Kamloops. Stream freezes over duringt he winter of 1911-12. A metering made under ice cover on Febuary 1, 1912, showed a discharge of 8.3 second-feet.

Gauge.-Standard vertical staff gauge read tri-weekly by Eugene Cooney.
Channel.-The channel is straight at the gauge section, the stream bed is composed of stones and boulders and the control is good.

Discharge Measumement.- The gatugeheight-discharge curve is well defined for the stream's range.

Accuracy. - The accuracy of returns given is considered to be very high.

TRANQ(OLLE RIVER.

Tranguille river is about 30 miles long, varring in width from 15 to 50 feet and in depth from 1 to 6 feet. It rises in township 25 , range 19, west of 6 th meridian, at an elevation of about 6,000 feet, and discharges into Kambonps lake, whose altitude is 1,125 feet. About 3 miles from the mouth, there is a

SESSIONAL PAPER No. 25f
canyon 100 feet wide, with steep granite banks. Just above the canyon the right fork of Tranquille river enters. It rises in lake du Bois at an elevation of 2,500 feet. The middle fork joins the Tranquille about 4 miles above the head of the canyon, one branch of which is known as Watching creek, rises in Pass lake (3,300 feet). The main stream fed by the snow of the Sil-Whoia-Kun mountains (6,030 feet) comes from Tranquille lake (4,800 feet). These lakes are difficult of access, and no storage has as yet been possible, although if necessity arose it no doubt could be obtained. The drainage basin of the Tranquille river is sparsely timbered in the lower reaches, but well timbered in the upper part. There are two dams on Tranquille river, both of which have fallen into disuse. They were constructed several years ago by mining interests. The upper dam, on Watching creek, was 20 feet high.

The river station on Tranquille river was established on June 4, 1911, by C. G. Cline. The measuring section is located about 20 feet above Cooney's diversion dam, and $1 \frac{1}{2}$ miles above the mouth. This is an excellent section; the control is good, current uniform, banks high, and there is one permanent channel. The measurements are all made by wading. A standard vertical staff gauge is located 100 yards above the dam, and its datum is referred to three benchmarks.

Discharge Measurements of Tranquille River near Kamloops 1911-12-13.

	Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gianco Height.	Dirlhar-e.
	1911.			Feet.	Sq. ft.	Ft. persec.	Feet.	Sec.ft.
$\begin{aligned} & \text { July } \\ & \text { Sept. } \end{aligned}$	11	C. G. Cline	1,046 1,046	14 13	$\begin{array}{r} 17.70 \\ 9.35 \end{array}$	$\begin{aligned} & 1 \cdot 05 \\ & 0.25 \end{aligned}$	0.91	$\begin{array}{r} 19 \cdot 10 \\ 2 \cdot 3 \pm \end{array}$
1912.								
Feb.	1	G. Stairs.	1,053	12	15.35	0.54		$\therefore \cdots$
		do	1,046	12		1%		$\therefore 7$
April	13.	E. M. Dann	1,046	11	$15 \cdot 20$	1-5	$0 \cdot 96$	17. 0_{1}
May	17.	do		34	$59 \cdot 20$	-70	\because	$3456 \cdot 06$
\cdots	12.	do	1,104	36	74.50	,	\because	30.0
June	20.	do	1,104	3.	52. 10	$8 \cdot(1)$	$2 \cdot 10$	${ }^{3} 313 \cdot 90$
Aug. sept.	10.	do	1,	15	$19 \cdot 20$	1-70	$1 \cdot 01$	$433 \cdot 20$
1913.								
M:	$\begin{array}{r} 5 \\ 30 . \end{array}$	(1)	1,057	25	$29 \cdot 00$	4.00	1.4.;	$\begin{aligned} & 115 \cdot 611 \\ & 237 \cdot 00 \end{aligned}$
		do	1,057	18.5	$45 \cdot 81$	$5 \cdot 20$	$\because \cdot \cdots$	

Sote.-1 At Kamloops lake.
${ }^{2}$ At Cooney's Ranch (Ice conditions).
${ }^{3}$ Foot Bridge.
${ }^{4}$ Cooneys Ranch.
${ }^{5}$ Above Dam.

Nonthly Discharge of Tranquille River $1 \frac{1}{2}$ miles from Mouth for 1913.
(Drainage area, 230 square miles.)

Month.	Discharge in Second-Feet.				Rux-Off.	
	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	Total in acre-feet.
May	614	117	288.5	1.26	1.45	17,700
June	208	48	96.5	$0 \cdot 42$	$0 \cdot 47$	5,740
July...	153	24.	$67 \cdot 1$	$0 \cdot 29$	0.33	4,130
August....	24	7.5	$1 \pm .5$	$0 \cdot 06$	0.07	592
September	10	$4 \cdot 1$	$5 \cdot 8$	0.02	0.02	345
October......	$14 \cdot 9$	$4 \cdot 1$	$10 \cdot 4$	$0 \cdot 04$	$0 \cdot 05$	640

Daily Gafge Heights and Discharges of Tranquille river $1 \frac{1}{2}$ miles from Mouth for 1913.

Day.	May.		June.		July.		August.		September.		October.	
	Gauge Height	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1.	1.5	129	1.8	208	$1 \cdot 4$	105	0.95	24	0.75	$7 \cdot 5$	0.67	$4 \cdot 1$
2	1.5	129	1.75	194	$1 \cdot 35$	94	$0 \cdot 9.5$	24	$0 \cdot 75$	$7 \cdot 5$	$0 \cdot 67$	$4 \cdot 1$
3	$1 \cdot 52$	134	$1 \cdot 67$	172	$1 \cdot 4$	11.5	$0 \cdot 82$	11.4	$0 \cdot 75$	$7 \cdot 5$	$0 \cdot 67$	$4 \cdot 1$
4	$1 \cdot 57$	146	$1 \cdot 6$	153	$1 \cdot 3$	83	$0 \cdot 9$	17	0.8	$10 \cdot 0$	0.7	$5 \cdot 0$
5	1.4.5	117	1.5	129	1.3	S3	0.85	13.5	0.8	$10 \cdot 0$	0.7	$5 \cdot 0$
6	1.45	117	$1 \cdot 45$	117	$1 \cdot 3$	62	0.85	$13 \cdot 5$	$0 \cdot 75$	$7 \cdot 5$	$0 \cdot 7$	$5 \cdot 0$
7	$1 \cdot 6.5$	167	$1 \cdot 4$	105	$1 \cdot 2$	62	11.3	17	$0 \cdot 75$	$7 \cdot 5$	0.7	$5 \cdot 0$
8.	$1 \cdot 75$	194	$1 \cdot 35$	94	$1 \cdot 17$	57	$0 \cdot 9$	17	$0 \cdot 72$	fin	0. 7	$5 \cdot 0$
9	$2 \cdot 6$. 315	$1 \cdot 35$	94	1.15	53	$0 \cdot 85$	$13 \cdot 5$	$0 \cdot 72$	$6 \cdot 0$	0.7	$3 \cdot 0$
10	$2 \cdot 6.5$	540	$1 \cdot 3$	83	$1 \cdot 1$	45	0.85	$13 \cdot 5$	$0 \cdot 72$	$6 \cdot 0$	$0 \cdot 7$	$5 \cdot 0$
11.	2.8	614	$1 \cdot 25$	72	$1 \cdot 1.5$	53	0.8	10	0.7	$5 \cdot 0$	0.75	7.5
12.	$2 \cdot 35$	402	$1 \cdot 25$	72	$1 \cdot 2$	62	0.8	10	0.7	$5 \cdot 0$	0.77	$7 \cdot 5$
13.	$2 \cdot 3$	350	1.2	62	1.35	94	0.95	-4	0.7	$5 \cdot 0$	0.8	10
14	$2 \cdot 2$	340	1.2	62	$1 \cdot 45$	117	$0 \cdot 9$	17	$0 \cdot 7$	$5 \cdot 0$	$0 \cdot 85$	$13 \cdot 5$
15.	$2 \cdot 1$	303	$1 \cdot 2$	62	$1 \cdot 6$	15.3	$0 \cdot 9$	17	11.7	$5 \cdot 0$	0.85	$14 \cdot 9$
$1{ }^{17}$	$2 \cdot 1$	303	$1 \cdot 17$	57	1.5	129	$0 \cdot 87$	14.9	0.7	$5 \cdot 0$	0.87	14.9
17.	$2 \cdot 05$	286	$1 \cdot 15$	5.3	$1 \cdot 4$	105		$14 \cdot 9$	0.7	$5 \cdot 0$	0.87	11.9
18.	$2 \cdot 1$	303	$1 \cdot 12$	48	$1 \cdot 3$	83		14.9	$0 \cdot 7$	$5 \cdot 0$	0.87	14.9
19.	$2 \cdot 1$	303	$1 \cdot 15$	53	$1 \cdot 2$	62		$14 \cdot 9$	0.7	$5 \cdot 0$	0.87	$14 \cdot 9$
20.	$2 \cdot 07$	293	1.2	62	$1 \cdot 15$	53		11.!	0.7	$5 \cdot 0$	$0 \cdot 8.5$	$13 \cdot 5$
21.	$2 \cdot 05$	256	1-1.)	5.3	$1 \cdot 1$	4.5		14.9	0.7	$5 \cdot 0$	0.8 .5	$13 \cdot 5$
22.	$2 \cdot 05$	286	1.2	62	1.2	62		$14 \cdot 9$	0.7	$5 \cdot 0$	0.85	$13 \cdot 5$
23.	$2 \cdot 07$	293	$1 \cdot$	62	$1 \cdot 15$	53		14.9	0.7	$5 \cdot 0$	0.85	$13 \cdot 5$
24	$2 \cdot 1$	303	$1 \cdot 35$	94	$1 \cdot 1$	45	$0.8 i$	11.9	0.7	$5 \cdot 0$	().85	$13 \cdot 5$
25	$2 \cdot 17$	329	$1 \cdot 37$	99	1.11)	35	$0 \cdot 87$	$14 \cdot 9$	$0 \cdot 7$	$5 \cdot 0$	0.85	$13 \cdot 5$
26	$2 \cdot 15$	32.2	1.5	129	$1 \cdot 05$	35	$0 \cdot 8.5$	$13 \cdot 5$	0.7	$5 \cdot 0$		$13 \cdot 5$
27	$2 \cdot 15$	32.2	1.4	103	$1 \cdot 0$	30	$0 \cdot 82$	11.1	0.7	$5 \cdot 0$	Est'd.	$13 \cdot 5$
28	$2 \cdot 1$	30.3	$1 \cdot 4$	10.5	$1 \cdot 0$	30	0.8	10	0.7	$5 \cdot 11$	6 days	$13 \cdot 5$
29	$2 \cdot 0.5$	2, 51	1.5	129	$1 \cdot 0$	30	0.75	S. 5	0.7	$5 \cdot 0$	$=0 \cdot 8.5$	$13 \cdot 5$
30.	$2 \cdot 0$	268	1.4	105	0.97	26	$0 \cdot 75$	$7 \cdot 5$	$0 \cdot 67$	$4 \cdot 1$		$13 \cdot 5$
31.	1.9	238			0.9.5	24	$0 \cdot 75$	7.5				$13 \cdot 5$

SESSIONAL PAPER No. $25 f$
MISCELLANEOUS METERING STATIONS.
Limt of Miscelaneots stream Measuramentin Kambops division, Britioh Columbia Hydrographic Survey, during 1913.

River or Stream.	Location.	Gauging.	1.1te.	Hydrographer.
Bear Creek	Near mouth	$11 \cdot 1$	Nov. 11.	K. G. Chisholm.
Campbell Creek	do	$1: \%$	June 17.	H. J. Kevs.
Cache Creek	Abowe diversionz	$11 i-$	April 26.	$\mathrm{K}, \mathrm{G} \cdot \mathrm{C}, \mathbb{\&} \mathrm{C} \cdot \mathrm{G} \cdot \mathrm{C}$
do	do	$11 . \%$	May 15.	K. C. C.
do do	do do	$1 \because \because$	June 9.	do
$\stackrel{\text { do }}{\text { Cornwall }}$ Creek	do		July 3.	do
Cleme's Creek.	Near mouth	$\because \cdot 11$	May 20.	do
do	do	21.3	May 18	do
Dairy Creek	Above diversion	$2 \cdot 0$	June 14.	H. J, E. Fieys.
Duffy Creek	Near mouth	$\cdots \cdot 1$	June 13.	do
Eagle River	sicamous	1,427.0	Oct. 24.	E.M.D.\&K. G.C.
Eight Mile Creek	Guichon Creek	15.5	May \because	H. J. E. Keys.
$\begin{aligned} & \text { do } \\ & \text { do } \end{aligned}$	Drainage do	1.0	Aug. 2 Aug. 16	do do
Fortunes Creek	Below Power House	(1) ${ }^{\text {a }}$	Oct. 28.	K. G. C.
Fadear Creek	Near mouth	$39 \cdot 1$	June 28.	H.J.E.K.
Gordon Creek	Above diversions	$3 \cdot 1$	April 16	do
Highfalls Creek	At mouth near Celeste	$112 \cdot 0$	June 6	E. M. I)ann.
Mission Creek	Near mouth.........	166.4	Nov. 11.	E. M. D. \&H.J.K.
Murray Creek	Above diversions	26.4 8.0	May ${ }_{\text {Oct }}$	K. G. C.
Maiden Creek	do	1.3	April 30.	do
do	do	4.7	May 24.	do
Nelson Creek	Above divers. from Barnes Lake.	$1 \cdot 2$	May 2.	do
do	do do	$1 \cdot 0$	June 13.	do
Oregon Jack Creek	(Basque IRanch).	$4 \cdot 8$	May 21.	do
do	Above Hammond's headgate	$6 \cdot 2$	Aug. 2.	do
Power Creek	At mouth.	$4 \cdot 1$	Nov. 10.	E. M. I). ©I. G.C.
Ross Creek	Mouth.	2\%- 11	June 7.	E. M. Dann.
Ray Creek	Near mouth	$15 \cdot 0$	May 22.	H. J. E. Keys.
Scotch Cree	Mouth.	2,422.0	June 8 .	E. M. Dann.
Shuswap River	Coteau Falls	1,057.0	Oct. 30.	E.M.D.\&K゙, G.C.
Sermour River	Mouth.	4,272.0	June 5.	E. M. Dann.
'Three Mile Crcek.	Kamloops-Savona Rd.	$2 \cdot 0$	S'ept. 3.	H.J.E.K.
do	Savona-Merritt 12d....	0.5	Sept. 2.	H.J.E. K.
Tulameen Creek..		23: 511	Nov. 16.	F. M. D. \&K. G.C.
Twenty Mile Creek.	Above diversions	$13 \cdot 2$	Nov. 15.	E. M. D.
Twaal Creek	do	$3 \cdot 4$	June 17.	C. G. C. © K. G. C.
Venables Creek	do Venables Lake.	$1 \cdot 1$	May 21.	K. G.C.

REPORT

BRITISH COLUMBIA HYDROGRAPHIC SURVEY FOR 1913

CHAPTER 7
Kootenay Boundary Division-Hydrographic Data

CHAPTER VII.

KOOTENAY BOUNDARY DIVISION-HYDROGRAPHIC DATA.

REGULAR METERIN゙G STATION゙S.

AKOLKOLEX RIVER AT WIGWAM.

Location.-Section 35, township 21, range 7, west 6th meridian, about 1 mile from Wigwam, where the wagon road crosses the river just above the falls.

Records Available.-From May 1 to December 31, 1913.
Winter Conditions.-Heavy snowfall, thermometer rarely goes below zero. Stream at section seldom freezes except for a day or two.

Gauge.-Chain gauge is used, and is referred to three bench-marks. From May to October, inclusive, gauge readings are taken three times a week; during the rest of the year once a week, by J. A. Lewis, Wigwam.

Channel.-Straight for 100 yards above and below the section. The water is swift and flows through a rock box canyon for 150 yards above and below the section. The control is rock and appears very permanent.

Discharge Measurements.- Ieasurements are made from the upstream side of the wagon bridge. It is difficult to obtain accurate soundings in high water. In 1913, ten well distributed measurements were made.

Accuracy.-Apparently very accurate measurements were made, but due to the infrequency of gauge readings the mean monthly discharge cannot be guaranteed to within 10 per cent. December gauge readings were at times affected by ice.

General.-Akolkolex river is a stream about 20 miles long, rising in township 24 , range 28 , west 5 th meridian, at an elevation of about 6,000 feet, flowing in a south-westerly direction and discharging into Columbia river in township 22, range 1, west 6 th meridian, near Wigwam, B.C. It drains an area of over 100 square miles of heavily timbered and unscitled country. There are various falls and canyons between its source and mouth, but the only power possibility which has been investigated is about 1 mile from the mouth. Here the river flows through a canyon for about 150 yards. This canyon is of rock, box-shaped, about 35 feet wide, from 30 to 40 feet decp. At the foot of the canyon the river falls 335 feet in a horizontal distance of 50 yards. A total head of about 400 feet may be obtained and the construction cost will not be prohibitive.

The river above the falls is suitable for driving logs, but not navigable. Valuable timbered limits are held by the Lee Lumber Company, and a good trail has been constructed to these limits near the source of the stream.

The precipitation near the source of the stream is very great, and at the mouth about 40 inches (30 inches rain and 130 inches snow). The summers are hot with considerable rain, winters not particularly severe, the thermometer seldom falling below zero, and the snowfall is very heavy.

Akolkolex River near Wigwam, B.C. Upper Falls.

Akolkolex River near Wigwam，B．C．Lower Falls．

Discharge Measurements of Akolkolex river near Wigwam，I3．C． 1913.

1）ate．	Hydrographer．	Meter No．	Wilth．	Area of section．	$\begin{gathered} \text { H...n } \\ \text { Velocity. } \end{gathered}$	Gauge Height．	Discharge．
			Feet．	sq．ft．	F＇t．per sec．	Feet．	Sec．－ft．
May ？	（ \because L．Richardon	1，048	37	$1:$	\therefore	$2 \cdot 35$	402
May 30	J．A．Elliott．．．．．	1，672	37	7		7．50	2.704
June 9	do ．	1，672	37	45.5	41		3，990
June 27	do	1,672 1,672	37 37	314 2614	＂11	¢	2,110 1,340
July 25	C．E．Richardson	1,048	39	299	；	$5 \cdot 75$	$1,51$.
Aug． 13	J．A．Elliott．．．．．．	1，672	37	235	！	1 －	1，070
Sept． 16	IR．G．Swan，C．E．R．	1.14	39	186	\therefore	－1．11	5319
Nov． 20	C．E．Webb．．．．．．．．	1，64	\because	106	1.1	1.75	1：1

Note．－Section is in box canyon immediately above falls．

Akolkolex River, looking upstream from above falls.
Monthly Discharge of Akolkolex river near Wigwam, B.('., for 1913.
(Drainage area, 105 square miles).

Month.	Discharge in Second-Feet.				Riv-Off.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
May	2,810	320	1,493	14.22	16.37	91,600
June.	4,100	1,950	2,763	$26 \cdot 30$	29.34	164,000
July.	2,540	1,120	1,765	16.31	$19 \cdot 42$	111. (17\%)
August	1,630	755	1,193)	$10 \cdot 30$	11.57	67,000
September.	1.3(31	4411	691	6. 60	$7 \cdot 36$	41, 1171
()ctober...	536	274	344	$3 \cdot 30$	$3 \cdot 81$	21,100
November.	274	175	224	$2 \cdot 13$	$2 \cdot 35$	13,300
I ecember..	175	100	*127	1.21	$1 \cdot 40$	7,810

Note.-Estimated-Last 15 days in December.

SESSIONAL PAPER No. 25f

Daily Gauge Heights and Discharges of Akolkolex river near Wigwam, B.C., for 1913.

Daily Gauge Heights and Discharges of Akolkolex river near Wigwam, B.C., for 1913-Continued.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge	Gauge Height	Discharge								
	Feet.	Sec.-ft.										
1	7.4	2,540	$4 \cdot 9$	1,300	$3 \cdot 9$	875	2.6	410	$2 \cdot 1$	274	1.7	17.5
	6.9	2,280	$3 \cdot 0$	1,340	$4 \cdot 1$	9.5.	$2 \cdot 5$	3×1	$2 \cdot 1$	${ }_{274}^{274}$	1.7 1.6	17.1
$3 .$	6.4 5.9	1,780	$5 \cdot 4$	1,440 1,530	$4 \cdot 4$	1,220	$2 \cdot 4$	${ }_{353}^{381}$	$2 \cdot 1$	${ }_{274}^{274}$	$1 \cdot 6$	
5	$6 \cdot 4$	2,030	$5 \cdot 6$	1,630	$4 \cdot 9$	1,300	$2 \cdot 3$	326	$2 \cdot 1$	274	1.6	160
6	6.9	2,280	$5 \cdot 2$	1,440	$4 \cdot 5$	1,120	$2 \cdot 2$	3110	$2 \cdot 1$	274	$1 \cdot 6$	160
7	$7 \cdot 3$	2,490	$4 \cdot 8$	1,260	$4 \cdot 2$	1,000	$2 \cdot 1$	274	$2 \cdot 1$	274	1.5	145
8	6.7	2,180	4.8	1,260	$4 \cdot 0$	917	$2 \cdot 1$	274	$2 \cdot 0$	249	1.5	145
-	$6 \cdot 0$	1,830	4.8	1,260	$3 \cdot 7$	795	$2 \cdot 1$	274	$2 \cdot 0$	249	1.5	145
10	3.8	1,730	$4 \cdot 9$	1,300	$3 \cdot 7$	795	$2 \cdot 1$	274	$2 \cdot 0$	249	1.5	14.5
11	$3 \cdot 6$	1,630	$5 \cdot 0$	1,340	3.5	716	$2 \cdot 3$	326	$2 \cdot 0$	249	$1 \cdot 4$	130
12	$5 \cdot 4$	1,530	$5 \cdot 1$	1,390	$3 \cdot 3$	6.41	$2 \cdot 4$	353	1.9	224	1.4	$131)$
13	5.2	1,440	$4 \cdot 3$	1,040	$3 \cdot 3$	641	$2 \cdot 6$	410	1.9	224	1.4	13.3
14	5.0	1,340	$4 \cdot 1$	958	$3 \cdot 2$	f.115	$3 \cdot 0$	536	1.9	224	1.4	1.31
15.	$4 \cdot 9$	1,300	$4 \cdot 0$	917	$3 \cdot 1$	570	$3 \cdot 0$	536	1.9	224	1.4	130
16	4.8	1,260	$4 \cdot 0$	917	$3 \cdot 1$	570	$2 \cdot 6$	410	1.8	194	1.35	122
17.	$4 \cdot 9$	1,3010	$4 \cdot 0$	917	$3 \cdot 1$	570	$2 \cdot 5$	351	1.8	199	$1 \cdot 35$	122
1.	$4 \cdot 9$	1,300	$3 \cdot 9$	875	$3 \cdot 1$	570	$2 \cdot 4$	353	1.8	199	$1 \cdot 35$	122
19	$6 \cdot 3$	1,980	$3 \cdot 9$	875	$3 \cdot 1$	570	$2 \cdot 4$	353	1.8	199	1.35	122
20	$6 \cdot 6$	2,130	$3 \cdot 7$	795	$3 \cdot 0$	536	$2 \cdot 4$	353	1.8	199	1.30	115
21.	6.8	2,230	$3 \cdot 6$	755	$3 \cdot 0$	536	$2 \cdot 4$	353	1.8	199	$1 \cdot 30$	115
22	$7 \cdot 0$	2,330	3.7	795	$3 \cdot 0$	536	$2 \cdot 4$	353	1.8	199	$1 \cdot 30$	115
23	$7 \cdot 1$	2,380	$3 \cdot 8$	835	$2 \cdot 9$	503	$2 \cdot 3$	326	1.8	199	$1 \cdot 20$	100
21	$6 \cdot 6$	2,130	$3 \cdot 9$	875	$2 \cdot 8$	471	$2 \cdot 3$	326	1.8	199	$1 \cdot 20$	100
25	$5 \cdot 9$	1,780	$4 \cdot 0$	917	$2 \cdot 7$	440	$2 \cdot 3$	326	1.8	199	1-20	100
26.	$5 \cdot 4$	1,530	$4 \cdot 1$	958	2.7	440	$2 \cdot 2$	300	1.8	199	$1 \cdot 20$	100
27.	$5 \cdot 0$	1,340	$4 \cdot 1$	958	$2 \cdot 7$	440	$2 \cdot 2$	300	1.8	199	$1 \cdot 20$	100
28	4.5	1,120	$4 \cdot 2$	1,000	$2 \cdot 7$	440	$2 \cdot 2$	300	1.7	175	1.20	100
29.	$4 \cdot 6$	1,170	$4 \cdot 2$	1,000	$2 \cdot 7$	440	${ }^{2 \cdot 1}$	274	1.7	115	$1 \cdot 20$	100
30	$4 \cdot 6$	1,170	$4 \cdot 1$	958	$2 \cdot 7$	440	$2 \cdot 1$	274	1.7	150	$1 \cdot 20$	100
31.	4.8	1,260	$4 \cdot 0$	917			$2 \cdot 1$	274			$1 \cdot 11$	100

BEAVER RIVER AT SIX-MILE CREEK.
Location.-Township 29 , range 25 , west 5 th meridian, 4 miles from the mouth, about 150 yards from the railway station at Six-mile creek, on the downstream side of the lumber company's bridge.

Records Available._-From May 24 to November 1, 1913.
Winter Conditions.-Severe ($-30^{\circ} \mathrm{F}$.) with heary snowfall. Ice conditions exist generally from November to the end of March. Frazil ice is to be contended with.

Couge.-Chain gauge is used and referred to three bench-marks. Wim. Moc reary reads the gatuge daily at jp.m.. at which time the river during the summer freshet is considered to be at a mean height for the day.

Channel.-straight for 100 yards above and below the section. The river is very swift during high water, and aceurate soundings can only be made at low water. During the freshet in June, July and August, water flows through two or three small side chammels. As yet the control has not been studied, but appears permanent.

Discharge Measurement.- Measurements are made from the downstream side of the bridge. In 1913, ten discharge meaturements were made, one of which was made under ice conditions on December 3, giving a discharge of 3:30 c.f.s.

Accuracy. - The gatuge-height-discharge curve shows a close accuracy though the section does not appear to be good. The fact that during the summer the
river varies greatly on a warm day depreciates the accuracy of the gauge reading. The 1913 data are within 15 per cent only.

General.-Beaver river has its source in the Grand glacier of the Selkirk range at Duncan pass in township 24, range 24, west 6th meridian, at an elevation of about 6,000 feet. It is 40 miles long, and flows in a northerly direction, discharging into the Columbia near Beavermouth, at an elevation of about 2,500 feet. It drains an area of about 400 square miles of heavily timbered, very mountainous country. The C.P.R. main line runs up the valley from Beavermouth for 15 miles to Bear creek near Rogers pass, and the river, in its lower reaches, winding across a broad valley, is familiar to thousands of tourists. Its upper reaches are uninhabited except at Rogers pass, and only C.P.R. employces and a lumber camp may be found near the mouth.

The scattered bits of agricultural lands have not been taken up and at present the only industry in this watershed is lumbering. In 191: the Mre reary Lumber Company started operations at Six-mile creek. Valuable limits are held by the company.

There are no pronounced falls or rapids in the upper part of the river, but near the mouth there is the Natural Arch (or Gateway) close to the railway. There is a fall in the river of about 80 feet in a distance of 3,000 feet, the river being only from 20 to 40 feet wide with rocky banks. At the head of the rapids the C.P.R. rail is only 15 feet above high-water mark, and at the foot it is 25 feet above high water. A dam at the head of the rapids would give excellent pondage. Any development is restricted by the proximity of the present grade of the railway.

Discharge Measurements of Beaver River near Six-mile Creek 1913.

	Date.	Hydrographer.	Meter No.	Width.	Area of section.	M. Velocity.	Gauge Height.	Discharge.
1913.				Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
M.	24	C. E. R	1,048	147	3.7	- 51	3.60	3,040
June	5		1,048	154	¢01	3.10	$4 \cdot 30$	4,840
June	12	J. A. F	1,672	156	8.56	$5 \cdot 26$	$4 \cdot 65$	5,420
July	7		1,672	150	6699	$8 \cdot 61$: -	5,240
Julv	20		1,672	149	485	T.	$4 \cdot 0$	4,460
sept.		C. F. IR. \& R. G. S	1,048	75	231	$6 \cdot(1)$	$2 \cdot(1.5$	1.7.
Dee.		C E.W...........	1,045	15	122	$2 \cdot 87$	$0 \cdot 45$	330

Monthly Discharge of Beaver River near Six-mile Creek for 1913. (Drainage area, 400 square mi.es.)

	Discharge in Second-Feet.				Mun-Off.	
MONTH	Maximum.	Minimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	I)epth in inches 0 O1 Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-fect. } \end{gathered}$
June.	6,420	2.720	4.915	11.6	129	276.000
July.	5,300	2, 469	1.110	1. ${ }^{-1}$	$12 \cdot 19$	$\bigcirc 5.5000$
August	4.940	2,319	3,40)	9.71	$11 \cdot 9$	239,000
September	4,100	- -	2.11911	$\therefore 17$	$5 \cdot 70$	123,000
October.	1,980	59,4	1,130	$2 \cdot 8.3$	$3 \cdot 26$	69,600

Note. -Station established May 24. 1913.
Gauge readings discontinued October 31, 1913.

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Beaver River near Six-mile Creek for 1913.

SESSIONAL PAPER No． $25 f$
Daily Gauge Heights and Discharges of Bearer River near Six－mile Creek for 1913 fontinumel

Dir．	July．		August．		September．		October．		5．c．entimer		December．	
	（i：ally． Height	Dis－ charge	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { ancon } \end{aligned}$	Gauge Height	Dis－ charge	Gauge Height	Dis－ charge．
	Feet．	Sec．－ft．	Feet．	Sec．－ft．	Feet．	Sec．ft．	Feet．	Sec．－ft．	Feet．	sce．ft．	Feet．	Soc．－ft．
1	$4 \cdot 1$ 3.4	4.430 4.100	3.9 4.0	4,100 ,+ 259	8.3 3.6	3,170 3,620	1．8 2.4	$\begin{aligned} & 1,350 \\ & 1,9>0 \end{aligned}$	0.8	569		
3	$3 \cdot 4$	3，320	$4 \cdot 2$	4，600	$3 \cdot 9$	＋．16101	$2 \cdot 1$	1．いい			11.4 .9	350
1	$3 \cdot 3$	？1可	$4 \cdot 1$	4.430	3.1	2.850	1.8	1，350				
5.	$\therefore 5$	3，470	$4 \cdot 1$	4，260	$3 \cdot 2$	3，020	$1 \cdot 6$	1，350				
6.	3.9	4， 100	：$!$	4， 100	$2 \cdot 8$	2，460	1 ＂	1.440				
7.	$4 \cdot 6$	5.3	$4 \cdot 3$	4.870	－	2，340	1.7	1，260				
8.	$3 \cdot 9$	4.100	$4 \cdot 4$	1.940	$2 \cdot 7$	2，340	1.7	1.260				
9.	4.0	4.260	$4 \cdot 1$	4，430	$2 \cdot 6$	2．2010	1.	1.350				
10.	$4 \cdot 3$	4.750	＋．	4，600	$2 \cdot 5$	2,100	1.7	1，269				
11	4．0	4，260	$4 \cdot 1$	4． 430	$3 \cdot 0$	2,723	1.7	1，260				
12.	3.9	＋，100	$4 \cdot 0$	4，260	$\stackrel{9}{2} \cdot 6$	2，220	1.11	1．170				
11	\cdots	3.160 3,170	$3 \cdot 7$		$2 \cdot 5$	2． 110	$1 \cdot 6$	1，260				
15.	$3 \cdot 0$	2，720	$3 \cdot 8$	3，940	$2 \cdot 1$	1，640	1.7	1，260				
16	$3 \cdot 1$	2． 80	$3 \cdot 6$	3，620	2.0	1.540	1.7	1，260				
17.	$3 \cdot 10$	2.720	$3 \cdot 5$	3．471	$2 \cdot 0$	1，540	1．11	1，170				
18.	$2 \cdot 8$	2,469	$3 \cdot 3$	3，170	$2 \cdot 5$	2，100	1.7	1.260				
19.	＋．1	$\pm .430$	$3 \cdot 4$	3，320	$2 \cdot 1$	1，610	$1{ }^{\prime \prime}$	1，170				
20.	$4 \cdot 6$	$\therefore .7$	$3 \cdot 1)$	2．ご	$2 \cdot 0$	1，510	$1 \cdot 6$	1.170				
21.	15	5，120	\because	2，340	$2 \cdot$	1，750	1%	1，050				
22.	$4 \cdot 6$	5，300	$3 \cdot 2$	3，020	$2 \cdot 1$	1，540	1.7	1，000				
23.	$4 \cdot 6$	5． 3000	$3 \cdot 9$	4，100	1.9	1，440	1.3	920				
21.	$4 \cdot 6$	5， 300	$3 \cdot 8$	3，940	1.9	1，440	$1 \cdot 2$	± 11				
25.	4．7）	5，300	$3 \cdot 6$	3，620	1.5	1，350	$1 \cdot 1$	87				
26.	$4 \cdot 5$	5，120	$3 \cdot 8$	3，940	1.4	1，440	1.1	770				
27.	$4 \cdot 5$	5，120	$3 \cdot 5$	3，470	1.6	1，350	1.11	\％ 1 （1）				
25.	1．t	4.940	$3 \cdot 8$	3，940	1.4	1，440	$1 \cdot 1$	770				
29.	3.8	3，940	$3 \cdot 6$	3，620	1.8	1，350	1.10	701				
30.	$3 \cdot 0$	2，720	$3 \cdot 4$	3， 320	1.8	1，350	$10 \cdot 8$	564				
31.	$3 \cdot 6$	3，620	$3 \cdot 7$	3， 750			$0 \cdot 9$	6.30				

BLAEBERIRY RIVER．

Location．－South－west $\frac{1}{4}$ section 29，township 28，range 22，west 5th meridian， 11 miles north of Golden，about 1 mile from the mouth，on the down－ stream side of the C．P．R．bridge．

Records Available．－April 15，1912，to November 14，1912；June 1，1913， to November 30， 1913.

Winter Conditions．－Severe（ $-30^{\circ} \mathrm{F}$ ．）with heavy snowfall．Ice conditions exist generally from the middle of November to the 1st of April．Frazil ice．

Gauge．－A vertical staff gauge is used and read three times a week，by H．M．Cooper，during the open season．

Channel．－The channel is straight for about 50 yards above and below the station．The water is swift and controlled by a sandbar about 100 yards down－ stream．This bar probably shifts．Exceedingly high water on the Columbia may effect the gauge readings．

Discharge Measurements．－Measurements are made from the downstream side of the railway bridge．In 1912 eight meterings were made，one of which was made on the 21st of February under ice conditions，the discharge was 53 c．f．s；in 1913 nins meterings were made，which formed a gauge－height－discharge curve varying considerably from that of 1912.

Accuracy．－Due to the infrequency of gauge readings and the apparent non－permanency of the control，the results are guaranteed only to be within 15 per cent．

5 GEORGE V., A. 1915
Discharge Meastrements of Blacherry River at C. P. R. Bridge 1911-13.

Date.		Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.	
	1911.			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.	
Oct. Feb.	16	C. E. Richardson	1,048	69	177	1.75	$0 \cdot 90$	$310 \cdot 0$	
	21.		1,048	51	148	$0 \cdot 413$		(1,53.5	
	1912.								
June	6	H. C. Hughes.	1,025	70	199	$2 \cdot 43$	1.40	$484 \cdot 0$	
June	25	."	1,055	78	237	$3 \cdot 15$	1.905	$746 \cdot 0$	
July	25		1,055	86	398	$7 \cdot 28$	$3 \cdot 50$	2,900.0	
	11	"	1,055	80	293 979	4.52	$2 \cdot 72$	1,330.0	
July Oct.	3	C. E. Richardson.	1,05\%	70	215	$2 \cdot 40$	1.40	, $512 \cdot 0$	
	1913.								
May.	24.		J. A. Elliott.	1,672	80	290	4.59	$2 \cdot 45$	1,330.0
June	15.	.	1,672	-	340	$5 \cdot 91$	$3 \cdot 10$	2,010.0	
July	5	"	1,672	81	310	$4 \cdot 94$	$2 \cdot 70$	1,500.0	
July	5	"	1,672	83	310	$4 \cdot 89$	$2 \cdot 70$	1,510.0	
July	23	"	1,672	83	360	$6 \cdot 36$	$3 \cdot 32$	2,290.0	
Aug.	2		1,672	s0	341	$6 \cdot 33$	$3 \cdot 15$	2,160.0	
Sept.	5	C. E. Richardson	1,048	80	335	$5 \cdot 60$	$3 \cdot 02$	1,880.0	
Sept.	16	J. A. Elliott.......	1,672	75	250	$\therefore \cdot 64$	$1 \cdot 90$	$910 \cdot 0$	
Nov.	30.	C. E. Webb..	1,048	52	1.51	1.38	$0 \cdot 50$	$212 \cdot 0$	

Note-(${ }^{1}$ Ice conditions.

Monthly Discharge of Blaeberry River at Golden for 1913.
(Drainage area, 325 square miles.)

Month.	Discharge in Second-Feet.				RuN-OfF.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
June	3,460	1,530	2,449		8,41	
July:	2,740	1,270	1,875	$5 \cdot 77$	$6 \cdot 65$	115,000
August.	2,749	1,030	1,835	$5 \cdot 1 \mathrm{it}$	$6 \cdot 52$	113,000
September.	1.140	720	1,058	$3 \cdot 26$	$3 \cdot 61$	63,000
October...	900	370	607	1.87	$2 \cdot 16$	37,300
November.	415	170	274	$0 \cdot 84$	0.94	16,300

SESSIONAL PAPER No. $25 f$
Daily Gauge Heights axd Discharges of Blaeberry Piver near (iolden for 1913.

BUGABOO CREEK.

Location. - About 3 miles southwest of Spillimacheen Landing, 40 miles south of colden, on the downstrean side of the highway hriden, 1 mile from the mouth.

Records Available.-June to October, 1912; June to November, 1913.
Winter Conditions.-Severe $\left(-40^{\circ} \mathrm{F}\right.$.) with heavy snowfall, the creek usually freezes over in November and does not open again till April. Frazil ice.

Gauge.-Vertical staff gauge fastened to the pier of the bridge, and read daily, during the open season, by Jas. Montgomery.

Channel.-Straight for 100 feet above and below the gauge; the water is swift during freshet; there is one chamel in low water, and wo in high water.

Discharge Measurements.-Meterings are taken from the downstream side of the bridge, four being taken in 1912, and cight in 1913.

Accuracy.-The control has not been thoroughly studied. The 1913 gauge heights do not give the same discharge as mor-pmonding gange hejuhto in 1912: a slight possibility of backwater from the (mambiat river when the hather - wean is extremely high; 1913 results on the Bugaboo are guaranteed to be within 10 per cent.

5 GEORGE V., A. 1915
Discharge Measurements of Bugaboo River near Spillimacheen, 1912-13.

Monthly Discharge of Bugaboo River near Spillimacheen for 1913.
(Drainage area, 190 square miles.)

Month.	(Discharge in Second-Feet.)				Run-Off.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
June.	2,910	820	1,654	8.70	9.71	98,200
July...	1,650	570	1,070	$5 \cdot 63$	$6 \cdot 49$	65, 800
August.	1,390	510	878	$4 \cdot 62$	$5 \cdot 33$	54,000
September	1,790	350	569	$2 \cdot 99$	$3 \cdot 34$	33,900
October...	400	160	292	1,54	1.78	17,900
November	220	85	145	0.76	0.85	8,6.30

SESSIONAL PAPER No. 25 f
Daily Gatge Heights and Discharges of Bugaboo River near Spillimacheen for 1913.

Daily Gauge Heights and Discharges of Bugabon River near Spillimacheen for 1913-Continued.

COLUMBIA RIVER, GOLDEN.
Location.--Southwest ${ }_{4}^{1}$ section 12, township 27, range 22, west 5 th meridian. above mouth of Kicking Horse river, 1 mile from Ciolden, B. C., 100 yards below the Columbia River Lumber Company's mill.

Records Available.-During the open season from 1903-13. Gauge heights from 190:-11 were obtained through the courtesy of the Columbia River Lumber Company. One ice measurement made in February, 1912, gave diecharge of 795 c.f.s., and one made in February, 1914, gave discharge of 894 c.f.s.

If inter Conditions.-The winters are severe ($-10^{\circ} \mathrm{F}$.) with heavy snowfall. Ie conditions generally exist from the middle of November to the end of March.
(icume.-- Tertical staff gange referred to three bench-marks, and read daily by the Columbia River Lumber Company, during the open season.

Chamel.-The section is located in the middle of a straight streteh of river of 1,500 feet. It low water there is a pronounced riffle 300 yards below gatuge but at high water this riffle disappears.
1)ischarge Weasurements.- Measurements are made from boat held by temporary cahle about 100 yards below mill, eight discharge measurements were made in 1912, and five in 1913.

SESSIONAL PAPER No. $25 f$

Accuracy.-The gauge readings are good. Great difficulty is encountered in metering river at high water, and during June and July aerorace is not guaranteed to within 15 per cent, hut in the remaining monthe it is probahly within 10 per cent.

Discharge Me.asurements of Columbia River near (iohlen, 13. (., 19111212-13.

Date.	Hydrographer.	Meter No	Width.	Area of Section.	Mean Velocity.	 Height.	Discharge.
1911.			Feet.	Sq. it.	Ft. per sec	Ft. In.	Sec. ft.
Oct. 17	C. E. Richardson.	1114	176	792	2.36	109	1,870
$\text { Feb. }{ }^{19012 .}$		1048	175	615	$1 \cdot 27$		71.51
June 4.	H. C. Hughes.	11.50	200	1,030	$3 \cdot 02$	$9 \cdot 2 \cdot 0$	3,100
" 8		110.5	220	1,270	$3 \cdot 52$	$\therefore \quad 0 \cdot 6$	4,490
" 24	"	110.5	419	2,485	$4 \cdot 35$	5) 0.6	10,800
July 24	"	1055	385	1,910	$4 \cdot 60$	5 4.3	8,820
" 28		10.5	373	2,010	$4 \cdot 14$	$5 \quad 7 \cdot 7$	8,300
Oct. 1	C. E. Richardson	1055	180	798	2. 53	$10 \quad 6 \cdot 0$	2,020
May 1913.	J A Elliott						
June 16.	C. E. R and J. A.	1672	200	1,060	$3 \cdot 42$	$\begin{array}{ll}3 & 7.0 \\ , & 1.5\end{array}$	3,620 20,000
July 4		1672	400	2,690	4.20	$4 \quad 10.11$	11, 洮
Sept.16.	J. A. Elliott.	1672	270	1,290)	$4 \cdot 17$	81.0	5,340 ${ }^{3}$
Nov.24.	C. E. Webb.	1(1)	135	764	$2 \cdot 20$	$183 \cdot 0$	1,670 ${ }^{3}$

[^19]Monthly Discharge of Columbia River near Golden, B. C., for 1913.
(Drainage area, 2,500 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	Total in acre-feet.
I pril	2,000	1,530	1,647	(0).66	0.74	97,600*
May.	9,300	1,600	3,627	1.45	$1 \cdot 67$	22,300
June.	18, 6i0\%	9,760	14,402	5.76	6.43	857,000
July.	12,600	9,070	11,154	$4 \cdot 46$	$5 \cdot 14$	688,000
August	9,760	6,660	8,303	$3 \cdot 32$	$3 \cdot 83$	510,000
September	8,840	6,610	6,817	$2 \cdot 73$	$3 \cdot 05$	405,000
October...	6. 1169	2,660	3,875	1.55	1.79	238,000
November.	2.560	1,320	1,873	0.74	0.83	111,000

* First 11 days estimated.

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Columbia River near Golden for 1913.

SESSIONAL PAPER No. 25 f
Daily Gauge Heights and Discharges of Columbia River near Colden for 1913-Continued.

Day.	July.		August.		September.		October.		November.	
	$\begin{aligned} & \text { Ciauge } \\ & \text { Height } \end{aligned}$	$\begin{aligned} & \text { Dis- } \\ & \text { charge } \end{aligned}$	Gauge Height	Discharge	Cauge Height	$\begin{gathered} \text { Dis- } \\ \text { charive } \end{gathered}$	Gauge Height	$\begin{aligned} & \text { Dis- } \\ & \text { chare } \end{aligned}$	$\begin{aligned} & \text { Ciauge } \\ & \text { Heirht } \end{aligned}$	$\begin{aligned} & \text { Dis- } \\ & \text { charge. } \end{aligned}$
	Feet	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Fect.	Sec.-ft.
1	$4 \cdot 11$ 4.1	12,600 12.6400	$5 \cdot 7$ $5 \cdot 7$	9,070 9,070	$7 \cdot 0$ $7 \cdot 0$	6,510 6,510	7.4 7.4	6,060 (\%), (16i)	$9 \cdot 11$ $9 \cdot 11$	${ }^{2} .5660$
3	$4 \cdot 11$	12, 6×0	$5 \cdot 6$	9,300	$7 \cdot 0$	6,510	$7 \cdot 3$	(i) (16)	10.0	2,460
4	$4 \cdot 11$	12,610	$5 \cdot 6$	9.300	$7 \cdot 0$	6,510	7.8	5,4610	110.11	2.46 ()
5	$4 \cdot 1$	12,400	$5 \cdot 6$	9,300	$7 \cdot 2$	6,210	8.0	5,010	$10 \cdot 1$	
6.	$4 \cdot 2$	12,2010	$5 \cdot 5$	9,530	$7 \cdot 3$	6,060	8.0	5,010	$10 \cdot 1$	2,360
7	$4 \cdot 3$	12, 2311)	5.5	9,530	7.3	6.1969	8.2	4,810	$10 \cdot 3$	2.180
.	$4 \cdot 4$	12,000	5.5	9,530	7.5	5,910	8.4	4,560	$10 \cdot 3$	$\because 2.180$
9	4.5	11,.001)	$5 \cdot 4$	9,760	$7 \cdot 4$	6,060	8.7	4,110	$10 \cdot 3$	2,180
10	$4 \cdot 5$	11, ¢(1)	$5 \cdot 4$	9,760	$7 \cdot 2$	6,210	$8 \cdot 9$	3,810	$10 \cdot 4$	2,180
11	$4 \cdot 16$	11,600	$5 \cdot 3$	$\therefore, 8411$	$7 \cdot 0$	6,510	- 9	3,810	$10 \cdot 4$	2.180
12.	$4 \cdot 6$	11,600	$5 \cdot 8$	$\therefore .810$	$6 \cdot 5$	5. 440	s.9	3,311	$10 \cdot 5$	2.14 .41
13.	4.7	11,400	$5 \cdot 9$	8,610	$6 \cdot 2$	7,790	S.9	3,:10	$10 \cdot 6$	2,010
11	4.7	11,4010	5.9	8,610	$5 \cdot 8$	\therefore Si4	A. 10	3,810	11.8	1,830
15	4.7	11,400	5. 10	8.610	$5 \cdot 8$	S, i+1)	$8 \cdot 10$	$3, .110$	10.8	1, 830
15	4.5	11,100	5,10	8,610	$5 \cdot 8$	\therefore St0	s. 11	3,670	10.9	1,750
17	4.8	11,100	$6 \cdot 0$	8,180	$5 \cdot 9$	\therefore ¢,610	$8 \cdot 11$	3,670	$10 \cdot 10$	1,750
1.	$4 \cdot 10$	10.910	${ }_{6}^{6.1}$	7,950	6.11	8.150	9.11	3,540	$10 \cdot 10$	1,750
19.	$5 \cdot 0$	10,400	$6 \cdot 2$	7,790	$6 \cdot 1$	7.94)	$9 \cdot 2$	3,300	$10 \cdot 10$	1,750
20	$5 \cdot 4$	9,760	$6 \cdot 4$	7,610	$6 \cdot 5$	7,440	9.3	3,180	$10 \cdot 10$	1,750
21	- 6	9,300	6.4	7,610	6.7	7,110	$9 \cdot 3$	3,180	$10 \cdot 11$	1,670
22	5.7	9,070	$6 \cdot 2$	7,790	$6 \cdot \mathrm{~A}$	6,960	$9 \cdot 3$	3,180	11.0	1,600
23.	5.f	9,300	$6 \cdot 2$	7.790	$7 \cdot 0$	6,510	$9 \cdot 3$	3,180	11.2	1,460
24.	5.4	9. 360	$6 \cdot 3$	7,610	$7 \cdot 3$	6,010 ${ }^{\text {a }}$	9.4	3,180	11.4	1,390
25.	$5 \cdot 2$	9,990	$6 \cdot 5$	7,440	$7 \cdot 6$	5,760	9.5	3,070	11.5	1,320
26	$5 \cdot 11$	10,400	6.7	7.110	7.7	5,610	9.5	3,070	11.5	1,320
27	$4 \cdot 11$	10,900	6.8	6.960	7.6	5, 260	9-6	2.960	11.5	1,320
25	$4 \cdot 9$	10,900	$6 \cdot 9$	6,960	$7 \cdot 5$	5,910	9. $\%$	2,960	11.5	1,320
29	$4 \cdot 9$	10.914)	(f. 11)	6,810	7.5	5,910	$9 \cdot 8$	2,760	11.5	1,320
30	4.9	111.9140)	(6. 11)	6, 311	$7 \cdot 5$	5,910	$9 \cdot 10$	2,660	11.5	1,320
31	4.9	10,900	$6 \cdot 11$	6,660			$9 \cdot 111$	2, 6fil)		

COI, UMBIA IRIVEIR NEAR REVELSIOKE。
Location.-Southeast $\frac{1}{4}$ section 33, township 23, range 2, west 6 th meridian, above the mouth of the Illicillewaet river on the downstream side of the highway bridge near Revelstoke.

Records Available-1912-13, during open season.
Winter Conditions.-Severe with heavy snowfall; ice conditions exist generally from November to the end of March. Frazil ice.

Gauge.-Chain gauge used and daily readings taken during open season by J. H. Jones.

Channel.-About 1,000 feet wide, controlled by a fairly permanent sandbar 500 yards below. Shift in 1913 apparently caused by the building of a breakwater at the control.

Discharge Meramements. Elewion well distributed meazurement- taken during 1911-12-13. Miscellaneous ice cover metering taken on February 27, 1912. Discharge 4,460 c.f.s.

Accuracy.-Accurate gauge reading, fair conditions for metering. 'These results are guaranteed to be within 5 per cent.

5 GEORGE V., A. 1915
Discharge Measurements of Columbia river near Revelstoke, B. C., 1911-12-13.

Date.	Hydrograp	Meter No.	Width.	Area of Section.	Mean Velocity.	Height.	Discharge
1911.	C. E. Richardson	1048	Feet.705	Sq. ft. 4,990	Ft. per sec.$2 \cdot 66$	Feet.$5 \cdot 45$	Sec.-ft.$13,300$
Oct. 12.							
Feb. 27.		1048	523	3,160	$1 \cdot 41$		14,460
Apris 19...		1048	710	5,140	$2 \cdot 60$	5.54	13,000
June 24...		1048	960	12,500	$7 \cdot 80$	15.50	96,900
Aug. 20..		1048	, 840	10,200	6.40	12.75	135,000
Sept.14.		1055	825	7,570	$4 \cdot 80$	$9 \cdot 20$	36,400
Oct. 9...		1055	710	6,230	$3 \cdot 10$	$7 \cdot 30$	219,700
1913.							
May 5.	"	1048	705	5,040	$2 \cdot 40$	$5 \cdot 60$	${ }^{3} 12,300$
May 26.	"	1048	${ }^{840}$	10, 100	$6 \cdot 02$	$12 \cdot 82$	61,800
June $7 .$.	"	1048	1,055	13,400	$7 \cdot 60$	16.30	102,000
Sept. 17....	"	1048	825	7,340	$4 \cdot 33$	$9 \cdot 20$	31,800

${ }^{1}$ Ice conditions. ${ }^{2}$ Various widths. ${ }^{3}$ Include piers.

Monthly Discharge of Columbia river near Revelstoke for 1913.

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
April.				1.36	1.51	726,000
May..	94,500	12,300	36,500	$4 \cdot 05$	$4 \cdot 67$	2,240,000
June.	148,000	83,600	109,900	12.21	13.62	6,490,000
July ...	109,000			9.38	$10 \cdot 81$	
August....	95,800	47,300	73,000	8.11	$9 \cdot 35$	4,490,000
September	71,100	23,400	39,400	$4 \cdot 38$	$4 \cdot 89$	$2,340,000$
October....	24,000	13,000	17,209	1.91	$2 \cdot 20$	1,060,000
November.	13,000	9,860	11,209	1.24	$1 \cdot 38$	666,000

Note.-*Minimum discharge in second-feet for April is estimated.

SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of Columbia river near Revelstoke. for 1913.

Daily Gauge Heights and Discharges of Columbia river near Revelstoke for 1913.-Continued.

COLUMBIA RIVER NEAR CASTLEGAR.

Locution.-C'astlegar precinct, Nelson Water District, below Arrow lakes and above mouth of Kootenay river, at the ('.P.R. bridge near C'astlegar, B.C.

Winter Conditions.- The snowfall is fairly heavy; the thermometer seldom goes below zero; the river never freezes over at this section.

Gauge. - Vertical staff gatuge referred to three bench-marks, and read daily by Mr. P. G. Farmer, of Castlegar, B.C.
(Whanel.-Straight for 200 yards above and below the measuring section and gatuge. A pronounced riffe in low water is lost during high water. The rise and fall of the river is about 25 feet.

Discharge Measurements.- Measurements are made from the upstream side of the ralway bridge. Four well-distributed measurements were made during 1913, by provincial district engineer, Water Rights Branch, and one by the British Columbia Hydrographic Surveys.

Accuracy.-The gatuge readings from February 1, 1913, are very reliahle. The discharge measurements are well distributed, and the 1913 gatue-heightdischarge curve appars good. The Kootenay river flows in 1 mile below the gauge, and it appears that the fall in this mile is only about 6 feet. This tends to show that an effect of backwater is unavoidable. Results are within 10 per cent.

SESSIONAL PAPER No． $25 f$

General．－This station on the Columbia was established by Provincial Engineer，Water Rights Branch，Nelson，in the hegiming of 1913，and taken over by the British Columbia Hydrographie survers in Oetober，1913．The dranage area is about 15,000 square miles，as compared with ahout 10,000 at our next station above at Revelstoke．This station forms a check on Kootenay river station near mouth and Columbia at Trail which is only a few miles below． Kootenay river plus Columbia river at Castlegar should equal Columbia river at Trail．For the monthe in 1913，in which we had gatue readings on all these streams July to December the sum of the mean monthly discharges at the first two stations equalled to within 10 per cent the corresponding mean monthly discharges at Trail．The rise and fall of the river at this station is practically the rise and fall of Lower Arrow lake

Discharge Measurements of Columbia River near Castlegar．B．C．for 1913．

Date．	Hydrographer．	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width．	Area of Section．	Mean Velocity．	Gauge Height	Discharge．
1913.			Feet．	Sq．ft．	Ft．per sec．	Feet．	Sec．－ft．
June 1t	W．G．L．\＆A．J．V						
duly 5.	d）do do			16,500 13,810		21.6 16.4	
Sept．${ }^{5}$				12，180	$5 \cdot 55$	13.11	fif
Nor 2.5	C．E．R．\＆A．J．V	1，527	44）	7，730	$2 \cdot 04$	$3 \cdot 2$	15， 500
$\text { Jan. } \begin{gathered} 1914 . \\ 14 \end{gathered}$	C．E．W．\＆A J．V	1，045	380	6，800	1 －titi	1.7	11，300

Note．－From Provincial Water Rights Engineer，Biker．

Monthly Discharge of Columbia River near Castlegar，B．C．，for 1913.
（Drainage area，15， 000 square miles．）

Moste．	Discharge in Second－Feet．				Rus－Off．	
	Maximum．	Minimum．	Mean．	$\begin{aligned} & \text { Per } \\ & \text { square } \\ & \text { mile. } \end{aligned}$	```Depth in unche. on \|)!am!ar. area.```	$\begin{gathered} \text { Total } \\ \text { min } \\ \text { acre-feet. } \end{gathered}$
＊January	13， 900	11．200	12，500	11． 1.3	11 ！${ }^{1}$	769， 000
Februarv	S， 6000	6，6， 610	7．810	11 in	$\cdots \cdot 1$	t． 5.1141
March．．．	6，900	6，600	6，600	11 11	1101	109.000
April．	21，000）	6，200	11，400	11． 71	11－；	いこ．1115
May．	88，800	21，500	＋1，000	$0 \cdot 73$	－ 1.1	$2,520,000$
June．	160，000	［1， 1681	136,000	$1+\cdots$	$10 \cdot 1$	$8.100,000$
July．．	123，000	86，100	101，000	17	71	6，200，000
August．	83,800	63.300	78，800	$\because \because$	1 ${ }^{\text {j }}$	$4,850,000$
September．	$68.8(4)$	42，700	Sti．！ 1111	$\because 71$	$4 \cdot 3$	
October．．．	41，000	25.500		$2 \cdot(1)$	$\because \cdot 3 n$	1，900，000
November	25,500	15， 500	20，000）	1－33	1．1）	1，190， 90.90
Decembez．	15，300	9，200	12．600	1）－ 1	1）． 97	17n，（ sh ）
＇【成＂：\％rar．	1617，11911	6，200	1： 11111	$\therefore \cdots 1$	34．0．91	31．214．6：0

[^20]Daily Gade Heigirts and Dischataes of Columbia River near Castlegar, B.C. for 1913.

Div.	January.		February.		March.		April.		May.		June.	
	Gauge Height.	Discharge.	Gaure Height	Discharge.	Gauge Height.	Discharge	Gauge Height.	Discharge	Gauge Height	Discharge.	Gauge Height	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-1t	Feet.	Sec.-ft.	Feef.	Sec.-ft.	Feet.	Sec.-ft.
1	2.55	13, 900	$1 \cdot 25$	8,600	$0 \cdot 6$	6,900	$0 \cdot 3$	6, 200	4.9	24,500	18.5	98,000
2	$2 \cdot 5$	12.5111	1-3.	8,600	$0 \cdot 6$	6,900	$0 \cdot 3$	5,200	4.9	24,500	19.0	101,000
:	$2 \cdot 5$	13,701)	1.25	S,600	$0 \cdot 6$	6.900	$0 \cdot 3$	6,200	$5 \cdot 0$	25,000	$20 \cdot 7$	112.000
4	$2 \cdot 5$	13,700	$1 \cdot 25$	8.600	0.6	6,900	11.4	6,400	$5 \cdot 1$	2., 500	21.5	116,000
5	$2 \cdot 5$	13,700	$1 \cdot 2.5$	8,600	(1-1)	6,900	(1). 1	6,400	S 1	25,500	$23 \cdot 5$	122,000
6	$2 \cdot 4.5$	13,400	1.25	8,600	$0 \cdot 6$	6,900	11.5	6,600	$5 \cdot 1$	25, 500	$23 \cdot 3$	127,000
7	$2 \cdot 4$	13.24	1.2.)	8,600	11.6	6,900	11.5	6, 600	5. 1	?25,500		130,000
8	$2 \cdot 40$	13,200	1.2	8,400	$0 \cdot 6$	6, $9^{\prime} 00$	$0 \cdot 5$	6,600	$5 \cdot 2$	26,000		133,000
9	$2 \cdot 35$	13,000	1.2	8,400	$0 \cdot 6$	6,900	11.5	5,600	$5 \cdot 2$	26,000		136,000
(1)	$2 \cdot \therefore$	13, 13141	1.2	S, 100	(1) 6	6,900	$0 \cdot 6$	6,900	$5 \cdot 5$	27,500		140,0140
11	$2 \cdot 35$	13,000	$1 \cdot 2$	8,400	11.6	6,900	$0 \cdot 7$	7,100	$5 \cdot 7$	28,500		144,000
12	$2 \cdot 35$	13,000	$1 \cdot 2$	8,400	$1 \cdot \mathrm{f}$	6,900	11.9	7.500	$6 \cdot 0$	30,000		145,000
13	$2 \cdot 25$	12,600	1.2	8,400	11.6	6,900	$1 \cdot 0$	7.800	13	31,500		152,000
14	-2.95	12,600	- -	S,400	$0 \cdot 6$	1i, mill	$1 \cdot 3$	8,800	fi. 1	32.000	28.2	156,000
15	2.2 .5	12,600	1.11	7, \$010	0.5	6,600	1.6	10,000	(1.)	34,000	28.8	160,000
16	2.1.5	12,200	1.0	7.800	0.5	6,600	1.9	11,200	$7 \cdot 1$	35.500		15¢,000
17	$3 \cdot 1.5$	12,200	11.0 .5	7,650	$0 \cdot 5$	6,600	$2 \cdot 0$	11,600	$7 \cdot 3$	35, 500		156,000
18	$2 \cdot 15$	12,200	0.95	7,650	0.5	6, 6500	1.8	10, 500	$7 \cdot 6$	33,000		154,000
19	$2 \cdot 10$	12,000	(). 80	7,300	11. 5	6,600	$1 \cdot 9$	11,200	$7 \cdot 7$	38,500		152,000
20.	$2 \cdot 10$	12,000	0.75	7,200	$0 \cdot 5$	6,600	$2 \cdot 0$	11,600	7.9	39,500		150,000
21.	$2 \cdot 10$	12,000	$0 \cdot 70$	7,100	0.1	6,400	$\because \cdot 1$	12,000	>. 1	40,500		148,000
22.	$2 \cdot 1!1$	12,000	$0 \cdot 60$	6,900	$0 \cdot 4$	6,400	$2 \cdot 4$	1:2, (10)	$8 \cdot 7$	43, 800		145,000
23	$2 \cdot 0$	11,600	$0 \cdot 69$	6,900	1). 4	6,400	$2 \cdot 6$	14,100	$9 \cdot 1$	45,900		142.000
24	$2 \cdot 11$	11,600	0.55	6,750	0.4	6,400	$2 \cdot 9$	15.300	9,9	50,200		139,000
25	$2 \cdot 0$	11. (6) 1	(1).5\%	6,750	$0 \cdot 1$	6,400	$3 \cdot 2$	$1{ }^{\prime},\left(0^{\prime}\right)!$	$10 \cdot 6$	51,000		136,000
26	$\because \cdot 11$	11,603	0.55		$0 \cdot 4$	r, 400	$3 \cdot 8$	19, 3101				
27	$2 \cdot 0$	11, (6a)	0.50	6, 6001	$0 \cdot 4$	6,400	$4 \cdot 1$	20, 700	$12 \cdot 3$	63,300		130,000
28	$1 \cdot 95$	11,400	$0 \cdot 50$	6,600	$0 \cdot 4$	6,400	4.1	22,100	13.4	69, 403		127,000
29	1.95	11.80%			0.1	6,400	$4 \cdot 6$	23,100	14.9	77,690		121.110)
30	1.95	11,400			0.4	[i, 4110	$4 \cdot 5$	24.000	$15 \cdot 7$	82,500		124,000
31.	1.919	11,200			$0 \cdot 3$	6,200			15.9	88,800		

Daily Gauge Heights and Discharges of Columbia River for Castlegar，B．C． for 1913．－Continued．

1） 12	July．		August．		September．		October．		November．		December．	
	Gauge Height	Dis－ Chata	Gauge He1：1．t	1） लharen	（iaure Height	Dis－ chat：－	Gauge H．imh．	$\stackrel{\Gamma}{\mathrm{I} .-}$	Gauge H．．．	Dis－ charge	Gauge Herich．t	$\begin{gathered} \text { Dis- } \\ \text { charse } \end{gathered}$
	Feet．	Sec．－ft．	Feet．	Sec．－ft．	Ieet．	Sec．－ft．	Feet．	Sec．－ft	$\Gamma \cdot \mathrm{l}$	－re it	lient．	Suc－it
	$22 \cdot 6$	123，000	16.9	88，800	$12 \cdot 1$	62， 200	$\because 2$	41， 100		25.5010	$2 \cdot 9$	15，300
$\begin{aligned} & 2 \\ & 3 \end{aligned}$	22．4	122,000 119,043	16.8	－ 3 ¢， 300	12.5	63,300 $6 \pm, 400$	7.9 7.8	39,5100 39,000	\bigcirc	22.500	2．919	1－1．．
\pm	21.8	118，000	16.	－	12.7	65，500	$7 \cdot 6$	3）	4.8	34.0010	$\underline{-9}$	15． 3 ，
$\overline{5}$	21.1	115，000	11.7	57，700	13.0	67，200	－ 4	37，000	1.7	23.510	$\because \cdot 3$	15，\％．
15	21.0	113． 9	16.7	こ－！	13.2	68，300	$7 \cdot 2$	36，000	4.7	23．5011	\because	14，900
	\therefore－${ }^{\text {a }}$	111，000	16.7	－י¢11	$13 \cdot 3$	68， 500	$7 \cdot 11$	35，000	$4 \cdot 6$	23， 100		14.900
4	－1．4	110，000	31i．	38，300	13.1	68,300 67,700	18.7	34，500	4.5	31．	2.7	14.900 $1+. \% 01$
10.	$20 \cdot 2$	103，000	11.0	88， 300	12.9	66， 600	（10．）	32，500	4.2	21．2．1．		14.500
11	11.9	106，000	16.8	－\％ 311	12.7	65，500	6.1	32，000	［．11	20，200	$2 \cdot 7$	14，500
1：	19.8	106,010 105,000	16．．if	57,200 56,100	12.4	63,900 62,500	$\mathrm{c}_{6}^{6 \cdot 3}$	31,500 30,500		20，2100	$\stackrel{2}{2.5}$	13，
$1 \pm$	14.11	101，000	16.4	－	12.1	61，700	6.0	30，000	$4 \cdot 0$	－	$2 \cdot 5$	13．7010
1．）	1.	［．．．）	16.0	S3， 800	11.	60，600	5.9	29，500	$3 \cdot 9$	19，700	$2 \cdot 3$	11．心．，
15	18.4	97.500	$15 \cdot 7$	－1．1111	11.10	29，5010	5.8	29，000	$3 \cdot 9$	19， 19		12， 800
17	17.6	92，900	15.4	－ 0 O，500	11.2	57，300	5.8	29，000	$3 \cdot 8$	19，300	$2 \cdot 2$	12，401
1	17.3	91.100	$15 \cdot 2$	79，300	$10 \cdot 6$	－1t．＂11）	5．	24． 119		19，300	$2 \cdot 1$	12．tm
1.	17.0	59，400	14.8	77， 100	$10 \cdot 0$	30， 000	\cdots	28，500	$3 \cdot 8$	19，300	$2 \cdot 1$	12.611
\cdots	$15 ;$	ST，i00	14.4	74，900	9．4	49，700	$5 \cdot 7$	28，500	$3 \cdot 7$	18，800	$2 \cdot 0$	11，600
$\because 1$	$16 \cdot 4$	\＄6．100	14.0	72，700	9.7	49，100	$5 \cdot 6$	28，000	$3 \cdot 5$	18，000	2.0	
22	16.1	－1．1．	13.6	70，500	4．	49，100	itis	28，000	$3 \cdot 4$	12， 514	1.9	11， 200
23	1\％．．．	37，209	$13 \cdot 3$	いいいい	9.	48， 100	3.5	27，500		17，500）	1.8	10，800
8	17.0	89，400	13.1	67，700	$9 \cdot 3$	47，000	j－1	27.010	$3 \cdot 3$	17，100	1.7	10，400）
25	$17 \cdot 3$	91，100	12.8	66，100	9． 1	45， 900	－ 1	27，000	$3 \cdot 25$	16，800	$1 \cdot 7$	10，000
26	17.5	92，300	12.8	6i5，100	$\cdots 1$	45，900	$5 \cdot 4$	27，000	$3 \cdot 2$	16，600	1．；	10，000
－18	17.6	92，901）	$12 \cdot 9$	tis． 1 lut	$9 \cdot 6$	45，400	$5 \cdot 3$	－4，$\times 14$	$3 \cdot 1$	16，201）	$1 \cdot 6$	10，010
29	$17 \cdot 7$	93，400	1\％	6．， 0100	$3 \cdot 6$	4，3，200	\cdots	26,000	$3 \cdot 1$	16，200	1.6	10.401
30	17.5	${ }_{92} 3000$	12：	6\％． 400		43， 810	5.2	26，000		16，200	1.5	9， 900
31.	17.3	91， 100	12.3	63， 300		－， 0	$5 \cdot 1$	25，500	$3 \cdot 0$	10，800	1.7 1.4	9，2011

COLUMBIA RIVER NEAR TIRALL，ROSSLAND PRECINCT，NELSON WATER DISTIRICT．
Location．－Fifteen miles above international boundary，above mouth of Pend d＇Oreille river，below mouth of Kootenay at the highway bridge near＇Trail， B．C．

Records Available．－May to December， 1913.
IVinter Conditions．－Fairly heavy snowfall．No contimuous cold weather， though for a day or two the thermometer may reach（ $-15^{\circ} \mathrm{F}$ ．）＇The river never freezes over．

Gauge．－Gauge painted on bridge pier was used till June，when it was abandoned and a chain gauge was installed．Mrr．C．A．l3rodwick，of＇Trail， B．C．，reads the gauge daily．

Channel．－The river winds from the left（looking downstream）about 100 yards above the bridge；below the river is straight for 400 yards；the control， a pronounced riffle 100 yards below the bridge，appears permanent．

Discharge Measurements．－Measurements are made from the upstream side of the traffic bridge．Thirteen well distributed measurements have been made．

Accuracy．－Accurate gauge readings have been obtained．lieliable measure－ ments were made throughout the year．The gauge－height－discharge curve appears to be very good．The results should be within 5 per cent．

General.-The station on the Columbia river at Trail was established in 1912 under the direction of Mr. Gray Donald. During 1913 it was maintained conjointly by the British Columbia Hydrographic Surveys and the provincial district engineer, Water Rights Branch, Nelson. Conditions appear permanent at this station, and satisfactory results should be obtained.

This station is very important. It is the chief factor from which the discharge of the Columbia into the United States may be obtained. Pend d' Oreille river is the only tributary of any consequence between this station and the International boundary.

The sum of the discharges of the Columbia at Trail, and the Pend d' Oreille should give the discharge of the Columbia into the United States to within 1 per cent. No gauging station has been established on the Columbia in the United States near the boundary, and it is not probable that any can be established without a large outlay, above Kettle Falls. The discharge at the international boundary does not appear to be more than 5 per cent less than the discharge at the Kettle Falls where, it may here be added, is the possible site of a large power development.

The drainage area of the Columbia at Trail is about 34,000 square miles. Below Arrow Lakes, some 25 miles above this station, the Columbia river never freezes, while above the lakes, ice conditions exist for generally four months in the year. The whole drainage area above this station is a very mountaionus country, with heavy snowfall. The tributaries of the Columbia are generally glacial fed, and any year may see extremely high water, if in June we have a series of hot days and nights. The variation between maximum and minimum flow is great. In 1913 the maximum recorded discharge was 297,000 c.f.s., and the minimum recorded discharge was in March, when it was as low as 1,4000 c.f.s.

Discharge Measurements of Columbia river near Trail, B.C., for 1912-13.

Note. - sistong wind downstream.
${ }^{2}$ Not a reliable measurement.
3^{3} New gauge was established August 7, when both gauges read $26^{\prime} 10^{\prime \prime}$. On November 5 old gauge read $12^{\prime} 6^{\prime \prime}$ while new gauge read $13^{\prime} 6^{\prime \prime}$. Difference caused by water piling up beside pier to which old gauge was tastened, during high water.

SESSIONAL PAPER No. $25 f$
Monthly Discharge of Columbia river near Trail, B.C., for 1913.
(Drainage aren, 84.000 square miles.)

Montr.	Discharge in Second-Feet.				Rtw-Off.	
	Maximum.	Vinimum.	Mean.	$\begin{aligned} & \text { Per } \\ & \text { supare } \\ & \text { mile. } \end{aligned}$	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-fent. } \end{gathered}$
May	165,000	56,800	86,400	$2 \cdot 54$	$2 \cdot 93$	ㅈ.31 . 1 m
June	312,000	191,000	262,000	7.70	9.9	15.600.800
July.	236,000	150,000	181,000	$5 \cdot 32$	i. 1.3	11.14. (11)
August	152,000	98,400	125,000	$3 \cdot 68$	$4 \cdot 24$	
September	95,400	62, 100	83,500	$2 \cdot 46$	20	4.90, "010
October.	60,500	39,300	46,900	$1 \cdot 38$	1.59	2,850,000
November	39,300	27,800	32,200	$0 \cdot 95$	1.06	1,920,000
December.	27,800	18,600	22,600	(0.6) ${ }^{\text {a }}$	11.6	1,390,000

Note.-Columbia river near Trail is immediately below the mouth of the Kootenay.

Dally Calge Heights and Discharges of Columbia river near Trail for 1913.

Daily Gauge Heights and Discharges of Columbia river near Trail for 1913.
-Continued.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Fect.	Sec.-ft.	Feet.	Sec.-ft.
1	$35 \cdot 7$	236,000	27.5	152,500	21.2	97,600	16.5	60,500	$13 \cdot 5$	39,300	11.6	27,800
2	32.3	232,000	$\because 7.2$	149, 500	21.1	96, 900	$16 \cdot 4$	59,700	$13 \cdot 4$	$3 \mathrm{~S}, 600$	11.5	27.500
3	$34 \cdot 9$	227,000	$26 \cdot 9$	147, 100	$21 \cdot 1$	96, SC0	$16 \cdot 1$	57,500	$13 \cdot 2$	37, 200	11.4	26, 500
4	34.5	222,200	$26 \cdot 6$	144,400	21.0	96,000	$15 \cdot 9$	56,100	$13 \cdot 2$	37, 200	$11 \cdot 3$	26,300
5	$34 \cdot 0$	217,000	$26 \cdot 2$	141,700	21.0	96,000	$15 \cdot 7$	54,700	$13 \cdot 1$	36,600	11.3	26,300
6	$33 \cdot 6$	213,000	$26 \cdot 0$	139,000	21.2	97,600	15.5	53,300	$13 \cdot 0$	36,000	11.3	26,300
\bigcirc	$32 \cdot 5$	204,000	$26 \cdot 1$	'139,900	21.3	9ヶ, 400	$15 \cdot 4$	52, 600	$13 \cdot 0$	36,000	$11 \cdot 2$	25, 200
5	32.4	200,000	$26 \cdot 1$	139,900	21.3	93,400	15.2	51,200	12.9	35, 400	$11 \cdot 1$	25,300
9	$32 \cdot 0$	196,000	$26 \cdot 0$	1:39,000	21.4	95, 400	$15 \cdot 0$	49,800	$12 \cdot 8$	34,500	$11 \cdot 0$	24,800
10.	31.7	193,000	$25 \cdot 9$	138,200	21.2	97,600	$14 \cdot 8$	48,400	$12 \cdot 8$	34, 310	$10 \cdot 9$	24,300
11	31.6	192,000	25.8	137.400	21.1	96,800	14.7	47,700	$12 \cdot 7$	34.200	$10 \cdot 8$	23,800
12	31.5	191,000	25.8	137,400	20.8	91,400	$14 \cdot 6$	47,000	$12 \cdot 7$	34,200	$10 \cdot 7$	23,300
13).	$31 \cdot 3$	189,000	$25 \cdot 7$	136, 6110	$20 \cdot 4$	91, 2100	14.5	46, 300	$12 \cdot 6$	33,600	$10 \cdot 6$	22,800
14.	31.5	1) 1 , (100)	25.5	135,000	$20 \cdot 1$	S. 5,800	14.3	44,900	$12 \cdot 1$	32,400	$10 \cdot 5$	22,300
15.	$30 \cdot 3$	179,000	25.2	132,600	$19 \cdot 8$	S6,400	$14 \cdot 2$	44,200	$12 \cdot 3$	31,500	$10 \cdot 4$	21, S00
16.	29.8	174,000	$25 \cdot 0$	131,000	$19 \cdot 4$	83,200	$14 \cdot 1$	43,500	$12 \cdot 2$	31,200	10.4	21,800
17.	29.4	170,000	24.8	129,200	$19 \cdot 0$	80,000	14.8	48,400	$12 \cdot 0$	30,000	10.1	21,800
15.	28.8	164,200	24.4	125,600	18.9	79,200	14.4	45,600	11.9	24,400	$10 \cdot 3$	21,300
19.	28.4	160,600	$23 \cdot 9$	121,100	15.7	77,600	$14 \cdot 3$	44,900	11.8	28, 800	$10 \cdot 3$	21,300
20.	$28 \cdot 0$	157,000	$23 \cdot 4$	116,600	$18 \cdot 5$	76,000	14.2	44,200	$11 \cdot 7$	28,300	$10 \cdot 2$	20,900
21.	$27 \cdot 6$	153,400	$22 \cdot 8$	111,200	$18 \cdot 3$	74,500	$14 \cdot 1$	43,500	$11 \cdot 6$	27, 800	$10 \cdot 2$	20,900
22.	$27 \cdot 2$	149,800	$22 \cdot 7$	110,300	$18 \cdot 2$	73,700	$14 \cdot 0$	42,800	11.7	23,300	$10 \cdot 2$	20,900
23.	27.2	149,800	$22 \cdot 3$	106,700	18.0	72,200	14.0	42,800	11.8	28,800	$10 \cdot 1$	20,400
24.	$27 \cdot 7$	154,300	21.8	102,400	$17 \cdot 7$	69,800	$13 \cdot 9$	42,100	11.8	28,800	$10 \cdot 1$	20,400
25.	27.9	156,100	$21 \cdot 6$	100,800	$17 \cdot 4$	67,500	$13 \cdot 8$	41,400	11.8	28,800	$10 \cdot 0$	20,000
27.	$25 \cdot 3$	159,700	21.6	100,800	$17 \cdot 3$	66,800	13.8	41,400	11.8	28,800	10.0	20,000
27.	$28 \cdot 6$	162,400	$21 \cdot 4$	99,200	$17 \cdot 1$	65,300	$13 \cdot 7$	40,700	11.8	28,800	$9 \cdot 9$	19,500
28.	25.5	,161,500	21.5	100,000	$16 \cdot 9$	63,700	$13 \cdot 7$	40,700	11.7	28,300	$9 \cdot 9$	19,500
29.	28.2	158, 800	21.5	100,000	$16 \cdot 8$	62,900	$13 \cdot 6$	40,000	11.7	28,300	9.5	19,000
30	$27 \cdot 8$	155,200	21.5	100,000	$16 \cdot 7$	62,100	$13 \cdot 6$	40,000	11.7	28,300	$9 \cdot 8$	19,000
31.	$27 \cdot 6$	[153,400	21.3	98,400			13.5	39,300			$9 \cdot 7$	18,600

HORSETHIEF CREEK.

Location.- On the east slope of the Selkirk mountains, on the traffic bridge 4 miles from Wilmer and 1 mile from the mouth.
liccords Available.-June to October, 1912; May to September, 1913; Ice measurement on November 27, 1913; discharge, 147.

Crouge.-Vertical staff gauge referred to three bench-marks, nailed to one bridge abutment. Capt. C'h. de Crespigny reads the gauge three times a week.

Chammel.-The measuring section is not a desirable one. The control does not appear permanent, and there may be a backwater effect from the Columbia. Accurate measurements may not be obtained.

Discharge Measurement.- Meterings are taken from the bridge, four measurements were made in 1912, and nine in 1913.

Accuracy.-The gauge readings are infrequent, the discharge measurements unroliable, and the gatuge-height-discharge curves for 1912-13 do not appear satisfactory, nor do they agree. Accuracy not guaranteed to within 25 per cent.

SESSIONAL PAPER No. $25 f$
Discharge Meastrements of Horsethief Creek, near Wilmer, B.C.efor 1912-13

Note.-1Gauge frozen in.

Monthly Discharge of Horsethief Creek at Mouth for 1913.
(Drainage area, 170 square miles.)

Daily Gauge Heights and Discharges of Horsethief Creek near Wilmer，B．C．， for 1913.

Day．	（Drainage Area 170 square miles．）								September．	
	May．		June．		July．		August．			
	Gauge－ Height．	Dis－ charge．	Gauge Height．	Dis－ charge	Gauge Height．	Dis－ charge	Gauge Height．	Dis－ charge	Gauge Height．	Dis－ charge
1			$2 \cdot 6$	2，380	$2 \cdot 2$	1，410	$2 \cdot 1$	1，220	$2 \cdot 1$	1，220
2	8	19	$2 \cdot 6$	2，380	$2 \cdot 2$	1，410	$2 \cdot 2$	1，410	$2 \cdot 0$	1，030
3	$\stackrel{-}{-}$	\bigcirc	$2 \cdot 6$	2，380	$2 \cdot 1$	1，220	$2 \cdot 3$	1，640	$2 \cdot 0$	1，030
4	II	$\stackrel{1}{0}$	$2 \cdot 6$	2，380	$2 \cdot 1$	1，220	$2 \cdot 5$	2，120	$2 \cdot 2$	1，410
5	$\stackrel{\infty}{\infty}$	n	$2 \cdot 6$	2，380	$2 \cdot 0$	1，030	$2 \cdot 4$	1，880	$2 \cdot 3$	1，640
6	$=$	－	$2 \cdot 6$	2，380	$2 \cdot 2$	1，410	$2 \cdot 3$	1，640	$2 \cdot 2$	1，410
7	－	$\stackrel{12}{2}$	$2 \cdot 6$	2，380	$2 \cdot 4$	1，880	$2 \cdot 3$	1，640	$2 \cdot 1$	1，220
δ	¢	－	$2 \cdot 7$	2，650	$2 \cdot 2$	1，410	$2 \cdot 2$	1，410	1.9	880
9		\bigcirc	$2 \cdot 8$	2，930	$2 \cdot 2$	1，410	$2 \cdot 2$	1，410	1.8	730
10	\％	${ }_{8}^{8}$	$2 \cdot 7$	2，650	$2 \cdot 2$	1，410	$2 \cdot 2$	1，410	1.8	730
11	ご	－	$2 \cdot 6$	2，380	$2 \cdot 2$	1，410	$2 \cdot 3$	1，640	$1 \cdot 8$	730
12	¢్ల゙	．	$2 \cdot 6$	2，380	$2 \cdot 1$	1，220	$2 \cdot 3$	1，640	$1 \cdot 9$	880
13	$=$	$\stackrel{\square}{\square}$	$2 \cdot 5$	2，120	$2 \cdot 0$	1，030	$2 \cdot 3$	1，640	1.9	850
14			$2 \cdot 5$	2，120	$2 \cdot 0$	1，030	$2 \cdot 2$	1，410	1.9	880
15			$2 \cdot 4$	1，880	1.0	880	$2 \cdot 2$	1，410	1.9	880
16	1.2	250	$2 \cdot 4$	1，880	1.9	880	$2 \cdot 2$	1，410	$1 \cdot 9$	880
17.	1.2	250	$2 \cdot 3$	1，640	1.9	880	$2 \cdot 0$	1，030	1.9	880
18.	1.2	250	$2 \cdot 3$	1，640	$2 \cdot 0$	1，030	1.9	880	1.9	880
19.	1.2	250	$2 \cdot 2$	1，410	$2 \cdot 1$	1，220	$1 \cdot 9$	880	1.9	880
20.	1.3	295	$2 \cdot 2$	1，410	$2 \cdot 2$	1，410	$2 \cdot 0$	1，030	1.9	880
21	1.4	355	$2 \cdot 2$	1，410	$2 \cdot 3$	1，640	$2 \cdot 2$	1，410	1.9	880
22	1.5	425	$2 \cdot 1$	1，220	$2 \cdot 4$	1，880	$2 \cdot 0$	1，030	$1 \cdot 8$	730
23	1.7	610	$2 \cdot 1$	1，220	2.5	2，120	$2 \cdot 1$	1，220	$1 \cdot 8$	730
24	1.9	880	$2 \cdot 1$	1，220	$2 \cdot 7$	2，650	$2 \cdot 2$	1，410	1.8	730
25	$2 \cdot 1$	1，220	$2 \cdot 2$	1，410	$2 \cdot 9$	3，200	$2 \cdot 2$	1，410	1.8	730
26.	$2 \cdot 2$	1，410	$2 \cdot 3$	1，640	$2 \cdot 5$	2，120	$2 \cdot 2$	1，410	$1 \cdot 8$	730
27	$2 \cdot 3$	1，640	$2 \cdot 3$	1，640	$2 \cdot 5$	2，120	$2 \cdot 2$	1，410	1.8	730
28	$2 \cdot 4$	1，880	$2 \cdot 3$	1，640	$2 \cdot 4$	1，880	$2 \cdot 2$	1，410	1.7	610
29	$2 \cdot 4$	1，880	$2 \cdot 3$	1，640	$2 \cdot 3$	1，640	$2 \cdot 2$	1．410	1.7	610
30	$2 \cdot 6$	2，380	$2 \cdot 3$	1，640	$2 \cdot 1$	1，220	$2 \cdot 1$	1，220	1.7	610
31.	$2 \cdot 6$	2，380			$2 \cdot 0$	1，030	$2 \cdot 1$	1，220		

ILLECILLEWAET RIVER NEAR REVELSTOKE，B．C．

Location．－This station is located within 1 mile of the city of Revelstoke， and 1 mile from the mouth of the river；the gauge is located on traffic bridge in S．W．$\frac{1}{4}$ section 26 ，township 23 ，range 2 ，west 6 th meridian；the measuring section is located on traffic bridge in N．E．$\frac{1}{4}$ section 22 ，township 23 ，range 2 ，west 6 th meridian．

Records Available．－October to December，1911；May to December，1912； April to November，1913．Measurement made under ice conditions in February， 1912，gave a discharge of 197 c．f．s．

Gauge．－A chain gauge，referred to two bench－marks，is used and read by Miss S．Moran of Revelstoke．

Channel．－The measuring section is one－half mile below gauge．The section at the gauge is very fast in high water，and at the measuring section there is a possibility of backwater from the Columbia during high water，the control at the gauge appears permanent．

Discharge Measurements．－Eight well distributed measurements were made during 1911－12，and five were made in 1913.

Accuracy．－The gauge readings are accurate，and the stream is closely watched by an observer．The discharge measurements should be good，but the gauge－height－discharge curve is not first－class．Accuracy not guaranteed to greater degree than 10 per cent．

Winter Conditions－See Columbia river near Revelstoke．

SESSIONAL PAPER No. $25 f$
Discharge Measurements of Illecillewaet River near Revelstoke for 1911-12-13.

${ }^{1}$ Gauge abandoned.
2slightly different section.
${ }^{3}$ Different section.

Monthly Discharge of Illecillewaet River near Revelstoke for 1913.
(Drainage area, 480 square miles.)

Month.		Discharge in Second-Feet.				R(N-()ff.	
		Masimum.	Minimum.	Me:m.	Per square mile.	Depth in inches on 1) rainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
April.		2,110	300	1,190	\because	$2 \cdot 79$	70,800
Mlay.		6,560	93.4	2,845	$\therefore 4$	(i. 411	175,000
June.		11,880	3,740	6,173	$12 \cdot 8$	14-3	364.000
July		10,300	3,310	5,134	10.7	12.34	316.19\%)
August		8,970	1,890	3, 410:		$9 \cdot 11$	23:3, 11110
September		11,800	1,240	2,302	4.5	$5 \cdot 36$	137,000
October...		1,500	906	1,094	$\because \cdot 3$	$2 \cdot 65$	67,000
Nravember		1,010	606	748	$1 \cdot$;	1.79	44.500

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Illecillewaet River near Revelstoke for 1913.

Daily Gatge Heights and Discharges of Illecillewaet River near Revelstoke for 1913.-Continued.

ILLECILLEWAET IRIVER AT GLACIER.
Location. - In township 26, range 26, west 5th meridian, at the foot-bridge immediately above the railway bridge, 200 yards from C.P.R. hotel, Glacier.

Records Available.-June to December, 1913.
Winter Conditions.-Severe ($-40^{\circ} \mathrm{F}$.) with very heavy snowfall-between
 November to April.

Gauge.-A vertical staff gauge is used and read by H. T. Hillyer, Glacier, B.C.

Channel.-The bed is rocky and during freshet the water is very swift, the control appears permanent.

Discharge Measurements.-'Twelve well distributed measurements were made during 1913.

Accuracy.-Accurate measurements were not obtained. The river is very flashy and the satuge reading- whamed (emmot be ghatanterd to the the mean for the day. Accuracy 20 per cent.

General.-This station on the Illecillewact is only $2 \frac{1}{2}$ miles from the tongue of the Illecillewaet or Great Glacier. 'The C.P.l. have a small power plant immediately above the tation from which they light their hotel during the summer. In extremely mold wather the stram probably dropse to 10 e.f.e.

5 GEORGE V., A. 1915
Discharge Measurements of Illecillewaet River near Glacier for 1913.

Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
			Feet.	Sq. ft.	Ft. per sec.	Feet.	Sec.-ft.
May 23	C. E. R	1,048	35	22.0	3.90	0.98	85.8
June 4	do	1,048	37	$55 \cdot 4$	$5 \cdot 70$	$1 \cdot 80$	316.0
June 5.	do	1,048	37	39.0	4. 80	$1 \cdot 40$	187.0
June 13	J. A. E.	1,672	37	63.6	6.77	$2 \cdot 00$	$430 \cdot 0$
July 6	do	1,672	${ }_{37}^{37}$	67.7	7. 20	$2 \cdot 10$	487.0
July 20	do	1,672	${ }_{37}$	$92 \cdot 0$	$8 \cdot 54$	$2 \cdot 70$	886.0
July ${ }^{\text {July }} 23$	C. ${ }_{\text {do }}^{\text {E. }}$.	1,672	${ }_{37}^{37}$	92.0	7.78	${ }_{2}^{2 \cdot 25}$	$565 \cdot 0$ $715 \cdot 0$
July 23.	do	1,048	37	$100 \cdot 0$	$8 \cdot 43$	$2 \cdot 90$	$843 \cdot 0$
Aug. 11.	do	1,048	37	65.1	$5 \cdot 70$	$1 \cdot 95$	$351 \cdot 0$
Sept. 10	R. G. S. \& C.E.R	1,048	37	33.8	$2 \cdot 56$	$0 \cdot 68$	86.4
Dec. 2.	C. E. W.	1,048	34	18.8	$1 \cdot 30$	$0 \cdot 20$	$25 \cdot 1$

Daily Gauge Heights and Discharges of Illecillewaet River near Glacier for 1913.

Month.	Discharge in Second-Feet.		
	Maximum.	Minimum.	Mean.
June.	650	125	329
July ...	950	125	483
August....	900	90	530
September	325	30	79
October...	35	20	27
November	20	15	16
December.	25	15	16

SESSIONAL PAPER No. 25 f

Daily Gauge Heights and Discharges of Illecillewaet River near (ilacier for 1913.

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Illecillewaet River near Glacier for 1913.-Continued.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height.	Discharge.	Gauge Height.	Discharge.	Gauge Height.	Discharge.						
	Feet.	Sec.-ft.										
1.	$2 \cdot 0$	410	2.9	850	1.0	105	$0 \cdot 4$	35	$0 \cdot 1$	20	$0 \cdot 1$	20
2	1.7	285	$2 \cdot 9$	850	$0 \cdot 9$	90	$6 \cdot 4$	35	$0 \cdot 1$	20	$0 \cdot 2$	25
3.	$1 \cdot 6$	245	$2 \cdot 9$	850	$1 \cdot 8$	375	$0 \cdot 3$	30	$0 \cdot 1$	20	$0 \cdot 2$	25
4	$1 \cdot 6$	245	$2 \cdot 9$	850	$1 \cdot 5$	215	$0 \cdot 3$	30	$0 \cdot 0$	15	$0 \cdot 1$	20
5.	1.8	325	$3 \cdot 0$	900	$0 \cdot 9$	90	$0 \cdot 3$	30	$0 \cdot 0$	15	$0 \cdot 0$	15
6.	$2 \cdot 1$	455	$2 \cdot 6$	700	0.8	75	$0 \cdot 3$	30	$0 \cdot 0$	15	$0 \cdot 0$	15
7.	$2 \cdot 2$	500	$2 \cdot 7$	750	0.8	75	$0 \cdot 3$	30	$0 \cdot 0$	15	$0 \cdot 0$	15
8	$2 \cdot 2$	500	$2 \cdot 3$	550	0.8	75	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
9.	$2 \cdot 0$	410	$2 \cdot 3$	550	0.6	55	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
10.	$2 \cdot 4$	410	$2 \cdot 6$	700	$0 \cdot 7$	65	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
11.	$1 \cdot 7$	285	$2 \cdot 5$	650	0.7	65	$0 \cdot 4$	35	$0 \cdot 0$	1.5	$0 \cdot 0$	15
12.	1.7	285	$2 \cdot 7$	750	$0 \cdot 8$	75	$0 \cdot 5$	30	$0 \cdot 0$	15	$0 \cdot 0$	15
13.	1.7	285	$2 \cdot 5$	650	1.0	105	$0 \cdot 3$	30	$0 \cdot 0$	15	$0 \cdot 0$	15
14.	$1 \cdot 1$	125	1.5	215	$0 \cdot 9$	90	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
15.	$1 \cdot 2$	145	$1 \cdot 3$	165	0.8	75	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
16.	$1 \cdot 1$	125	1.3	165	0.8	75	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
17.	$1 \cdot 4$	190	$1 \cdot 2$	145	$1 \cdot 0$	105	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 2$	15
18.	1.8	325	$0 \cdot 9$	90	$0 \cdot 9$	90	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
19.	$2 \cdot 4$	600	$0 \cdot 9$	90	$0 \cdot 8$	75	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
20.	$2 \cdot 9$	850	$1 \cdot 4$	190	0.8	75	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
21.	$3 \cdot 0$	900	$1 \cdot 4$	190	0.8	75	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
22.	$3 \cdot 1$	950	$2 \cdot 3$	550	$0 \cdot 4$	35	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
23.	$3 \cdot 0$	900	$2 \cdot 6$	700	$0 \cdot 4$	35	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
24.	$3 \cdot 0$	900	$2 \cdot 6$	700	$0 \cdot 4$	35	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
25.	$2 \cdot 8$	800	$2 \cdot 5$	550	$0 \cdot 3$	30	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
26.	$2 \cdot 8$	800	$2 \cdot 3$	550	$0 \cdot 3$	30	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
27.	$2 \cdot 7$	750	$2 \cdot 3$	550	$0 \cdot 3$	30	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
28	$2 \cdot 4$	600	$2 \cdot 3$	550	$0 \cdot 4$	35	$0 \cdot 2$	25	$0 \cdot 0$	15	$0 \cdot 0$	15
29.	1.8	325	$2 \cdot 2$	500	$0 \cdot 4$	35	$10 \cdot 1$	20	$0 \cdot 0$	15	$0 \cdot 0$	15
30.	$1 \cdot 4$	190	$2 \cdot 2$	500	$0 \cdot 4$	35	$0 \cdot 1$	20	$0 \cdot 1$	20	$0 \cdot 0$	15
31.	$2 \cdot 9$	850	1.8	325			0.1	20			$0 \cdot 0$	15

SESSIONAL PAPER No. $25 f$

Kicking Horse River looking upstream from Natural Bridge.

KICKING HORSE RIVER NEAIR GOLI)EN。

Location.-In N.E. $\frac{1}{4}$ section 12, township 27, range 22, west 5 th meridian, on traffic bridge in the town of Golden.

Records Available.-April to October, 1912; April to November, 1913. One metering was taken under ice conditions in February, 1912; discharge, 172 c.f.s.

One metering was taken under ice conditions in February, 1914; discharge 276 c.f.s.

Winter Conditions.-Severe ($-40^{\circ} \mathrm{F}$.), with heavy snowfall. Ice conditions generally exist from November to April. Frazil ice.

Gauge. - A vertical staff gauge is used and read two or three times daily by Mr. WI. Wemman of Cisklen, B.C'

Channel.-Straight for 200 yards above and below the station. Control is a sandbar about 100 yards downstream from section.

Discharge Measurements.-Measurements are made from bridge, ten being made in 1911-12, and five in 1913.

Accuracy.-Gauge readings are very accurate, the gave being read as many as six times a day during high water. Measurements appear accurate and gavge-height-discharge curves are very good. Results guarantoed to be within jo per cent, except in May and June, when there may be an error of 15 per cent.

5 GEORGE V., A. 1915
Discharge Measurements of Kicking Horse River near Golden for 1911-12-13.

${ }^{1}$ Ice Conditions.
${ }^{2}$ Water flowing inside channel.

Monthly Discharge of Kicking Horse River near Golden for 1913.
(Drainage area, 700 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
April.	1,260	650	836	1.20	1.34	49,700
May.	6,320	416	1,817	$2 \cdot 60$	$3 \cdot 00$	111,000
June	9,580	3,390	2,762	$4 \cdot 00$	$4 \cdot 46$	164,000
July	5,660	2,500	4,018	$5 \cdot 70$	$6 \cdot 57$	246,000
August	4,760	2,250	3,426	$4 \cdot 90$	$5 \cdot 65$	210,000
September.	4,240	1,420	2,056	$2 \cdot 90$	$3 \cdot 24$	122,000
October...	1,420	650	939	$1 \cdot 30$	$1 \cdot 50$	57.700
November	730	181	493	$0 \cdot 70$	0.78	29,400

SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of Kicking Horse River near Golden for 1913.

	Day.	April.		May.		June.	
		Gauge Height	Discharee	Gauge Height.	Discharge.	Gauge Height.	Discharge.
		Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
1				1.a	571	$5 \cdot 7$	7,040
$\frac{2}{3}$				1.7	44.3	5	7,420
4				1.7	4.3	$5 \cdot 8$	7,420 7,040
5.				1.11	416	$5 \cdot 7$	7,040
6			.1.1.	$1 \cdot 6$	416	$5 \cdot 4$	5,980
7				1.7	483	$5 \cdot 5$	6,320
5				1.7	4.3	$6 \cdot 0$	8,240
${ }^{9}$				$1 \cdot 7$	483	6.3	9, 5n)
10.				$2 \cdot 2$	84.)	$6 \cdot 3$?.アハ!
11				$2 \cdot 3$	979	$6 \cdot 2$	9,120
12				$2 \cdot 3$	979	$6 \cdot 1$	8,670
13				$2 \cdot 4$	1,060	$5 \cdot 5$	7.420
14				$2 \cdot 4$	1,060	$5 \cdot 7$	7,040
15.		1.9	8,501	$2 \cdot 4$	1,060	$5 \cdot 2$	5,350
16		$2 \cdot 1$	812	$2 \cdot 3$, 979	$4 \cdot 7$	4,000
17		$2 \cdot 3$	979	$2 \cdot 4$	1,060	$4 \cdot 5$	3,580
18		$2 \cdot 1$	812	$2 \cdot 3$	979	4.4	3,390
19		$2 \cdot 2$	895	$2 \cdot 4$	1,060	$4 \cdot 9$	4,490
20		$2 \cdot 5$	1,150	$2 \cdot 6$	1,240	$6 \cdot 0$	8,240
21		$2 \cdot 6$	1,260	$2 \cdot 7$	1,330	$5 \cdot 5$	6,320
22.		$2 \cdot 4$	1,060	$3 \cdot 0$	1,600	$5 \cdot 1$	5,050
23		$2 \cdot 1$	812	$3 \cdot 5$	2,130	$5 \cdot 1$	5,050
24.		$2 \cdot 1$	812	3.7	2,370	$4 \cdot 9$	4,490
25.		$2 \cdot 1$	812	$4 \cdot 1$	2,910	$4 \cdot 8$	4,240
26.		$1 \cdot 9$	650	4.4	3,390	$4 \cdot 7$	4,000
27.		$2 \cdot 0$	730	$4 \cdot 5$	3,580	$4 \cdot 8$	4,240
2		1.9	650	$5 \cdot 1$	5,050	$4 \cdot 6$	3,780
29.		1.9	650	$5 \cdot 5$	6,320	$4 \cdot 9$	4,490
:30.		$1 \cdot 9$	650	5. 3	5,660	$4 \cdot 8$	4,240
31.				$5 \cdot 5$	6.320		

5 GEORGE V., A. 1915
Daily Catge Heights and Discharges of Kicking Horse River near Golden for 1913.-Continued.

	Day.	July.		August.		September.		October.		November.	
		Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge
		Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft
		$5 \cdot 1$	5,350	4.5	3,580	$3 \cdot 3$	-2.590	\because	1. 4210	1.9	630
2		5.1	5,050 4.240	4.8	4,240 4,000	3.3	1.917)	-	1.420)	1.9	5
1		$4 \cdot 6$	3,780	4.7	4,000	4.7		2-6	1.2410	1.9	6,.il
5		$4 \cdot 4$	3,390	$4 \cdot 6$	3,780	4.5	4.241	$2 \cdot 5$	1,150	$2 \cdot 1$	730
6.		4.3	3,220	4.9	4.2411	$4 \cdot 3$	3,202	\cdots	1,150	$1 \cdot 9$	G.is)
		$5 \cdot 3$	5,660	$4 \cdot 6$	3,780	3.9	2. (\%)	2\%	!	1.9	(1,0)
		4.4	4,240	5.0)	4.760	3.7	2,	$\because 3$	9\%	$1 \cdot 8$	51
9		$4 \cdot 8$	4,214	4.7	4 , (1) $)^{\prime}$	3.9	2,690	2-	09	$1 \cdot$	8.1
10.		4.9	4,490	4.7	4,0ッ1)	$3 \cdot 7$	2,370	2	(19)	1.8	571
11.		4.8	4,240	4.5	3,580	$3 \cdot 5$	2.1301	$2 \cdot 2$	89.5	1.8	
112		4.5	3,580	$4 \cdot 8$	4,240	$3 \cdot 4$	2.010	\because	(19)	$1 \cdot 3$	5.1
13.		4.4	3,390	$5 \cdot 0$	4.86	$3 \cdot$	2.13	$2 \cdot 1$	1,4611	$1 \cdot 6$	416
11		$4 \cdot 2$	3, 14.10	$4 \cdot 6$	3,780	: $\cdot 1$	2.1111	$2 \cdot 1$	1.114)	$1 \cdot 5$	341
1.5		$4 \cdot 1$	2,770	$4 \cdot 3$	3,2:0	$3 \cdot 2$	1,790	$2 \cdot 3$	979	1.5	340
		$3 \cdot 8$	2,500	$4 \cdot 1$	2,770	$3 \cdot 2$	1,790	$2 \cdot 3$	979	1.8	571
17		$3 \cdot 8$	2,500	$4 \cdot 1$	2,770	$3 \cdot 1$	1,690	$2 \cdot 2$	395	1.8	571
1.		4.11	2,770	$4 \cdot 5$	3,580	$3 \cdot 4$	2,010	$2 \cdot 2$	895	1.6	416
19.		4.3	3,220	$3 \cdot 8$	2,500	$3 \cdot 3$	1,900	$2 \cdot 1$	812	1.5	340
		4.7	4,000	3.7	2,370	$3 \cdot 1$	1,690	$2 \cdot 1$	812	1.5	340
mi		$5 \cdot 0$	4,760	$3 \cdot 6$	2,250	$3 \cdot 0$	1,600	$2 \cdot 1$	812	$1 \cdot 3$	201
22.		$5 \cdot 1$	5,050	$3 \cdot 8$	2,500	$3 \cdot 0$	1,600	$\because \cdot 1$	812	1.3	181
23.		$5 \cdot 2$	5,350	$3 \cdot 9$	2,630	$2 \cdot 9$	1,510	$\because \cdot 1$	812	1.4	265
24.		$5 \cdot 0$	4,760	$4 \cdot 1$	2,910	$2 \cdot 8$	1,420	$2 \cdot 1$	812	1.6	416
		$5 \cdot 1$	5,050	$4 \cdot 2$	3,060)	$2 \cdot 8$	1,420	$2 \cdot 0$	730	1.7	483
26.		$5 \cdot 2$	5,350	$4 \cdot 2$	3,060	$2 \cdot 8$	1,420	$2 \cdot 0$	730	1.7	
27.		4.9	4,490	$4 \cdot 1$	2,910	$2 \cdot 9$	1,510	$2 \cdot 0$	730	1.7	483
2.		4.8	4,240	$4 \cdot 3$	3,220	$2 \cdot 8$	1,421	$2 \cdot 0$	730	1.7	483
29.		4,7	4,000	4.	3,060	$2 \cdot 8$	1,420	$2 \cdot 0$	730	$1 \cdot 5$	571
(3)		$4 \cdot 2$	3,060	$4 \cdot 5$	3,580	$2 \cdot 8$	1,420	$1 \cdot 9$	6.50		
31.		$4 \cdot 0$	2,770	$4 \cdot 2$	3,060			$1 \cdot 9$	650		

KICKING HORSE RIVER NEAR FIELD.

Location. - In township 28, range 18, west 5 th meridian, below the mouth of Yoho river, on the first traffic bridge, $3 \frac{1}{4}$ miles east of Field.

Records Available.-June to November, 1912; June to December, 1913.
Winter Conditions.-Severe (-40° F.), with heavy snowfall. The river generally remains frozen from the end of November to April. Frazil ice is to be contended with.

Gauge.-A chain gauge is used and read three times a week by Mr. Wm. Oke, of Field, B.C.
(hannel.-The chamel is straight for an yarde above and below the station, the water is very swift during freshet, the control fairly permanent.

Discharge Measurements.- Eight well distributed measurements in 1912, and eight in 1913 were made from traffic bridge above mentioned.

Accuracy. - The gatue readings are not frequent. The discharge measurements made in 1913 all agreed to within 2 per cent of the measurements made in 1912. The results at this station are within 10 per cent.

Kicking Horse River near Field, I3.C., looking upstream from foot of Canyon.

5 GEORGE V., A. 1915
Discharge Measurements of Kicking Horse River near Field, B.C., for 1912-1913.

	Date.	Hydrographer.	$\begin{gathered} \text { Meter } \\ \text { No. } \end{gathered}$	Width.	Area of section.	Mean velocity.	Gauge height.	Discharge.
	1912.			Feet.	Sq.-ft.	Ft. per sec.	Feet.	Sec.-ft.
June	6	C. E. Richardson	1,048	58	120	$2 \cdot 46$	$4 \cdot 4$	295
June	25	do	1,048	145	403	8.85	7.0	3,596
June	26	do	1,048	145	488	$9 \cdot 65$	$7 \cdot 6$	4,710
June	29	do	1,048	145	325	$8 \cdot 05$	$6 \cdot 4$	2,620
July	2	do	1,048	145	272	$7 \cdot 14$	$6 \cdot 0$	1,940
Aug.	13	do	1,048	73	192	$5 \cdot 00$	$5 \cdot 35$	963
Oct.	2	do	1.048	53	102	$2 \cdot 10$	$3 \cdot 70$	214
Nov.	19	do	1.048	45	738	1-60	$3 \cdot 10$	116
	1913.							
May	22	do	1,048	60	126	$2 \cdot 40$	$4 \cdot 15$	
July	3	do	1,048	73	220	$5 \cdot 82$	$5 \cdot 70$	1,290
Ju.y	28.	do	1,048	85	300	7.40	6.30	2,220
July	30	do	1,048	75	206	5.90	$5 \cdot 55$ 6.20	1,200
July	31	R G do	1,048	89	281	$7 \cdot 70$	$6 \cdot 20$ $6 \cdot 30$	2,190 2,300
Aug.	28	R. G. Swan.	1, C 48	88	297	$7 \cdot 80$	$6 \cdot 30$	2,300
Sept.	12.	C. E. Webb	1,048	61 45	${ }_{5}^{155}$	$\stackrel{3}{1.50}$	4.80 2.95	8596

Monthly Discharge of Kicking Horse River at Field below Yoho River for 1913.
(Drainage area, 130 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	Total in acre-feet.
June.	2,870	810	1,696	13,04	$14 \cdot 54$	101,000
July.	3,050	715	1,872	14.40	$16 \cdot 60$	115,000
August..	2,870	810	1,900	$14 \cdot 61$	16.85	117,000
September.	910	300	502	$3 \cdot 86$	$4 \cdot 31$	29,800
October ..	275	115	163	1.25	1.44	10,000
November.	115	95	106	0.81	$0 \cdot 90$	6,310
December.	95	75	82	$0 \cdot 63$	0.73	$5 \cdot 040$

SESSIONAL PAPER No. 25 f
Daily Ciduge Heights and Dischargen of Kicking Horse River near Field, below the Yoho, River for 1913.

		June.	
		Gauce Height.	Discharge.
		Feet.	Sec.-ft.
$1 .$.		\therefore :	1,410
2.		i.	1,550
3.		$\therefore 1$	1,710
4		\therefore	1,710
,		…	1,550
6		8.7	1,410
7		\bigcirc	1.70
8.		(i) 1	2,030
9.		\cdots	2,350
10.		$\therefore \times$	2.870
		6.5	2,650
12.		i ${ }^{\text {a }}$	2,500
13.		$6 \cdot 3$	2,350
14.		6. 19	1,580
1.5		$\therefore 7$	1,410
16		5.7	1,020
17.		i)	, 10
18.		\therefore	1,140
19.		$\therefore \cdot 4$	1,710
20.		$6 \cdot 2$	2,190
21		if.11	1,870
22		5-1	1,710
23		$5 \cdot 7$	1,410
24.		$5 \cdot 7$	1,410
25.		$5 \cdot 7$	1.410
26		$5 \cdot 6$	1,270
27		5. 5	1.140
28.		$5 \cdot 7$	1,410
29.		$\therefore \cdot$	1,550
30.		$5 \cdot 4$	1,710
31.			

Daily Gauge Heights and Discharges of Kicking Horse River near Field below Yoho River for 1913-Continued.

Day.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge.	Gauge Height	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height.	Discharge	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge.
	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
$\frac{1}{2} .$	6.2 6.0	$\begin{aligned} & 2,190 \\ & 1,870 \end{aligned}$	$\begin{aligned} & 6 \cdot 3 \\ & 6 \cdot 3 \end{aligned}$	$\begin{aligned} & 2,350 \\ & 2.350 \end{aligned}$	$\begin{aligned} & 5 \cdot 3 \\ & 3 \cdot 2 \end{aligned}$	$\begin{aligned} & 110 \\ & 810 \end{aligned}$	$\begin{aligned} & 4 \cdot 2 \\ & 4 \cdot 1 \end{aligned}$		$\begin{aligned} & 3 \cdot 2 \\ & 3 \cdot 2 \end{aligned}$	$\begin{aligned} & 115 \\ & 115 \end{aligned}$	$\begin{aligned} & 3 \cdot 0 \\ & 3 \cdot 0 \end{aligned}$	$\begin{aligned} & 95 \\ & 95 \end{aligned}$
3	5.7	1,410	6.4	2,511)	5.2	810	$4 \cdot 11$	23.	3.2	115	$3 \cdot 0$	95
4	5.7	1,410	$6 \cdot 6$	2,870	$5 \cdot 2$	810	3.9	215	$3 \cdot 2$	115	3.0 3.0	${ }_{95}^{95}$
3	$5 \cdot 6$	1,270	6.5	2,680	$5 \cdot 3$	910	$3 \cdot 8$	200	$3 \cdot 2$			93
6	$5 \cdot 8$	1,550	6.4	2,500	$5 \cdot 3$	910	3.7	1,5	$3 \cdot 2$	115	$3 \cdot 10$	
	$6 \cdot 4$	2,500	$6 \cdot 3$	2,350	$5 \cdot 3$	911	$3 \cdot 7$	18.5	$3 \cdot 2$	115	$\begin{aligned} & 3 \cdot 0 \\ & 3 \cdot 0 \end{aligned}$	95 95
9	${ }_{6 \cdot 1}^{6 \cdot 1}$	2,030	$6 \cdot 1$	2,030	${ }_{5 \cdot 0}$	6.30	$3 \cdot 6$	170	3.2	115	$2 \cdot 9$	${ }_{85}$
10.	$6 \cdot 1$	2,030	$6 \cdot 1$	2,030	4.9	560	$3 \cdot 6$	170	$3 \cdot 2$	11.5	$\stackrel{2}{2} \cdot 9$	85
11.	$6 \cdot 0$	1,870	6.2	2,190	4.9	56,0	$3 \cdot 6$	170	$3 \cdot 2$	11.5	2.9	
12.	$5 \cdot 7$	1,410	6.4	2,500	$4 \cdot 8$	5010	$3 \cdot 5$	1619	$3 \cdot 2$	115	$2 \cdot 9$	5
13.	-5	1,140	$6 \cdot 3$	2,350	$4 \cdot 7$	450	$3 \cdot 5$	160	$3 \cdot 2$	11.5	$2 \cdot 9$.
$1 \pm$	$5 \cdot 3$	910	$6 \cdot 0$	1,870	$4 \cdot 6$	400	$3 \cdot 5$	160)	$3 \cdot 1$	11.5	$2 \cdot 8$	75
15.	$5 \cdot 1$	715	$5 \cdot 7$	1,410	$4 \cdot 6$	400	$3 \cdot 4$	145	$3 \cdot 1$	105	$2 \cdot 8$	5
16.	$5 \cdot 1$	-1.5	$5 \cdot 5$	1,140	$4 \cdot 6$	400	$3 \cdot 4$		$3 \cdot 1$		2.8	
17.	$5 \cdot 1$	715	$5 \cdot 4$	1,020	4.5	360	$3 \cdot 4$	14.5	$3 \cdot 1$	105	$2 \cdot 8$	5
	5.5	1,140	$5 \cdot 4$	1,020	4.5	360	$3 \cdot 4$	145	$3 \cdot 1$	105	$2 \cdot 8$	75
19	$5 \cdot \mathrm{~N}$	1,550	$5 \cdot 3$	910	4.4	330	3.4	145	$3 \cdot 1$	105	$2 \cdot 5$	75
20.	$6 \cdot 1$	2,030	$5 \cdot 2$	810	$4 \cdot 4$	330	$3 \cdot 4$	145	$3 \cdot 1$	105	2.8	75
21.	$6 \cdot 4$	2,500	$5 \cdot 3$	910	$4 \cdot 3$	300	$3 \cdot 4$	145	$3 \cdot 0$	95	$2 \cdot 8$	
22.	6.4	2,500	$5 \cdot 5$	1,140	$4 \cdot 3$	300	$3 \cdot 4$	145	$3 \cdot 0$	95	$2 \cdot 3$	75
23.	$6 \cdot 4$	2,500	$6 \cdot 0$	1,870	$4 \cdot 3$	300	$3 \cdot 4$	145	$3 \cdot 1)$	95	$\stackrel{3}{2}$	5
24.	6.6	2,870	$6 \cdot 2$	2,190	$4 \cdot 3$	300	$3 \cdot 4$	145	$3 \cdot 6$	95	$2 \cdot 8$	75
25.	$6 \cdot 7$	3,050	6.2	2,190	$4 \cdot 3$	300	$3 \cdot 3$	130	$3 \cdot 0$	95		
26.	$6 \cdot 6$	2,870	6.2	2,190	$4 \cdot 3$	300	$3 \cdot 3$	130	$3 \cdot 0$	95	2.8	
27.	$6 \cdot 4$	2,500	$6 \cdot 1$	2,030	$4 \cdot 3$	300	$3 \cdot 3$	130	$3 \cdot 0$	95	$2 \cdot 8$	75
28.	$6 \cdot 3$	2,350	$6 \cdot 0$	1,870	$4 \cdot 3$	300	$3 \cdot 3$	130	$3 \cdot 0$	95	2.8	75
29.	$6 \cdot 0$	1,870	6.0	1,870	$4 \cdot 3$	300	3.3	130	$3 \cdot 0$	9.5	$2 \cdot 8$	\%
30.	$6 \cdot 1$	2,030	$6 \cdot 1$	2,030	$4 \cdot 3$	300	$3 \cdot 2$	115	$3 \cdot 0$	95	$2 \cdot 8$	75
31.	6.2	2,190	$5 \cdot 5$	1,550			$3 \cdot 2$	11.5			$2 \cdot 8$	75

KICKING HORSE RIVER NEAR NO. 2 TUNNEL
Location.-In township 28, range 18, west 5 th meridian, ahove mouth of Yoho river, immediately above (.P.R. bridge over the Kicking Horse between No. 1 and No. 2 tunnels, 5 miles east of Field.

Records Available.-July to October, 1912; April to December, 1913.
Gauge.-An enamelled iron vertical staff gauge is used and read twice daily by C. E. Hamilton of Field, B.C.

Channel.-The chamel is straight for 25 yards above and below the section. The control appears permanent.

Discharge Measurement.- Measurements are made hy the "cable carrier system' deseribed heretofore in this report. Six measurements were made in 1912, and six in 1913.

Accuracy. - Aceurate gange readings are ohtamed. The discharge measurements seem to vary somewhat with each other. The results are guaranteed to be within 15 per cent.

General.-The differences in discharge between the stations Kicking IIorse near Field and Kicking Horse near No. 2 tumel give the discharge of loho river.

SESSIONAL PAPER No. $25 f$
Disharie Meastrements of Kicking Horer River near No. 2 Tumel for 1912 1913.

	Date.	Hydrographer.	$\begin{aligned} & \text { Meter } \\ & \text { No. } \end{aligned}$	Width.	Area of Section.	$\begin{aligned} & \text { Mean } \\ & \text { Velocity: } \end{aligned}$	Gauge Height.	Discharge.
	1912.			Feet.	$\therefore \mathrm{si} . \mathrm{ft}$.	Ft. per sec.	Feet.	Sec.-ft.
June	23	C. E. Richardson.	1,048	42	110	$4 \cdot 01$	S.141	470
1.13			1,048	40	83.	\because	$4 \cdot 20$	299
Aug.	${ }^{5} 3$.		1,048	$\stackrel{+1}{39}$		4	$4 \cdot 45$	37
Oct.	2		1,055	30	269	\because	2.08	「! ;
Nov.	19.		1,045	15	115	$\because .51$	1.73	$\therefore \ldots$.
1913.								
Mas	$\because 1$		1,045	32	232	$\therefore \%$	$2 \cdot 45$	73.3
July	3.	*	1,049	${ }_{40}^{11}$	N05	$4 \cdot(11)$	$3 \cdot 85$	-15
July	23.		1,048	+30.6	63.5	".:	$3 \cdot 94$	
Aug.	23.	-	1,043	40.0	644	3.92	- -	2-2
Dec.	1.	C. E. Webb.	1,04s	14.0	1015	$2 \cdot 40$	0.90	293

Note.- ${ }^{2}$ Different section.
${ }^{2}$ Gauge datum raised 1 foot.

Monthly Discharge of Kicking Horse River above mouth of Yoho River for 1913.
(Drainage area, 50 square miles.)

[^21]Daily Gauge Heights and Discharges of Kicking Horse River above mouth of Yoho River for 1913.

Daily Gauge Heights and Discharges of Kicking Horse River above mouth of Yoho River for 1913．－－Contimued．

	Day．	Juls：		Augu－		\therefore Supurainy		Oetober．		Nimmiter	
		（i：112．．． Height	$\begin{aligned} & \text { Dis- } \\ & \text { chater } \end{aligned}$	Gauge Herem	I）is－ charge	$\begin{aligned} & \text { Gauge } \\ & \text { Howeli: } \end{aligned}$	Dis－ charge	G：4リッ Height	Ins－ Chater	（1：M12． Height	Inis-
		Feet．	Sec．ft．	limt	Sec．ft．	Fime	Soc．ft．	Feet．	－ac－ 11	li．．	Sec．eft．
1		4.1	$1{ }^{14}$	$\therefore 1$	2f？	：	242	－	－	$\because 1$	\because
		$4 \therefore$	H，	：	\％i，	$3 \cdot 1$	12.	\therefore	＇II＇	$\therefore 1$	33
3		＋${ }^{\prime \prime}$	\％	！ 11	， 31	$\because!$	1410	$\because 1$	93	＂＂	333
$!$		3－8	301.	： 1	\cdots	；	24：	\therefore	8	$\because 1$	\therefore
－		：	\therefore ：	$!^{\prime \prime}$	3.31	： 1	$\therefore 1$	\because	－1	－ 1	：
1		；	$2 \mathrm{HO}_{2}$	$!^{\prime \prime}$	351	；	212	\therefore ；	-4	\therefore－	33
$\overline{7}$		$4 \cdot 5$	＋1，	11	－i．．	$\therefore 1$	22	$2 \cdot 4$	73	$2 \cdot 11$	33
9		1 1	$3!10$	\pm \％	117	！	201	\cdots	\cdots	\therefore	33
S		1.	＋19	－	326	3	20	\because	管	\because	\％
11		$4 \cdot 2$	（！4）	；	315	；	$1-.1$	\cdots	（i）	$\therefore 11$	3：3
$1!$		$3 \cdot 8$	3115	！ 1	： 1	；	171	$2 \cdot 3$	fi＇	$2 \cdot 1$	33
$1:$		－．．i	$2 \mathrm{SfO}_{2}$	：	\therefore	： 1	1，	$2 \cdot 3$	fi？	± 11	：
$1+$		$\therefore 1$	…2	$4 \times$	：	$3 \cdot 2$	$15 i$	\therefore	促	$\therefore 11$	．
15		$\therefore 4$	222	$\because 9$	is	； 11	10.5	\therefore ：	fio	$\therefore 11$	i
1．1．		3.3	211	：	\cdots	．${ }^{\prime \prime}$	15.5	$2 \cdot 2$	\because	$2 \cdot 11$	；
17		$3 \cdot 2$	187	： 5	24.	$\therefore "$	1411	\because	32	$\because 11$	33
－		3.4	222	$\therefore \therefore$	－12	：11	15.5	$2 \cdot 2$	i．	－1	3，3
I＇		$3 \cdot 6$	Sti ？	$3 \cdot 4$	212	$3 \cdot 11$	1.5	\because	3	2.11	33
\therefore		4.11	， 1	\therefore ：	$\therefore 1$	$3 \cdot 11$	$1 \therefore$	\therefore	S	$2 \cdot 10$	： 3
$\therefore 1$		4．7	442	\because	214	$\therefore "$	1111	－	52	$2 \cdot 11$	：
22		4.1	414	$3 \cdot 3$	214	$\therefore "$	141		\because	$\because 11$	33
－		$4 \cdot 5$	165	$\therefore:$	－114	\therefore	ハ．	$2 \cdot 1$	1.	－11	33
策		1.1	44^{2}	$\therefore!$	－	\because	111	$\cdots 1$	\because	$\because 1$	3：3
$\therefore 1$		$4 . i$	Hiti	$\therefore \cdots$	－12	\because	1111	$2 \cdot 1$	$\because!$	± 1	
26		t ；	＋1，	$\therefore \therefore$	24.3	$\therefore 1$	！	$\therefore 1$	12		
\therefore		± 1	373	$\therefore \%$	2ff	\cdots	\％ 19	$\because 1$	\cdots	1＂	2，
\because		3.8	3315	$3 \cdot 4$	I－	\％	！${ }^{\text {a }}$	1	4	1 ＂	2.3
\cdots			26^{2}	$\because ;$	242	$\therefore 1$	＇＂．	$2 \cdot 1$	\because	$1 "$	25
． 1		；\ddagger	2？	： 4	\therefore			$2 \cdot 1$	＋1		

KOOTENAY RIVER AT（iLADE

Location．－Ten miles from the mouth，below the mouth of slocan river， 16 miles from Nelson，at the ferry cable near（ilade，B．C．

Records Available－May to December，1913．
Winter Conditions．－The thermometer seldom goes below zero；the snowfall is fairly heavy；the river never freezes over．

Gauge．－Four 5 foot gauges，reading from 0 to 5 feet， 5 to 10 feet， 10 to 15 feet，and from 15 to 20 feet are used，and read twice daily by F ．striloiff of Catade， B．C．

Channel．－The chamel is straight for guarter of a mile above and below section and very uniform．There are riffles 1,000 vards above and below the section which is ideal for metering purposes．
 during 1913 from a cable car used on a ferry cable．

Accuracy．－Accurate gauge readings are obtained，accurato measurements were taken，and the gatage－height－discharge curve is very satisfactory．The results at this station are guaranted to be within ber pent．

General．－The Kootenay river is one of the largest and most important． rivers in British Columbia．It rises in the Beaverfoot range of the Rocky

2．0F $2 \cdot \frac{1}{2}$
mountains, in township 24 , range 17 , west 5 th meridian. It flows in practically a southerly direction for 175 miles, where it crosses the border into the state of Montana. It re-enters Canada from Idaho at a poiné about 60 miles west from where it entered Montana. The river is now flowing almost due north through an extensive area of bottom land which is submerged in high water. About 15 miles from the border the river loses itself in beautiful Kootenay lake, famous to all travellers along the Crowsnest route of the C.P.R. Kootenay lake is 75 miles long-north and south-and from 2 to 6 miles wide. About 30 miles from the southern end of the lake is what is called the west Arm of Kootenay lake. This arm gradually narrows down till about 3 miles west of Nelson, a pronounced riffle shows us that we are once more following a river. From this point to the mouth is a distance of about 25 miles, in which the river falls about 350 feet, affording various power sites including Upper Bonnington and Bomnington falls. The Kootenay discharges into Columbia river shortly below Arrow lakes, and about 25 miles above the international boundary line.

From a hydrographic point there are three outstanding features on the Kootenay.
(1) Power developments and possibilities between Kootenay lake and the mouth of the river.
(2) The possibilities of a reclamation scheme to reclaim thousands of acres of land in Idaho and British Columbia between Kootenay lake and the international boundary line.
(3) Kootenay is an international stream-flowing into Montana from British Columbia, through Idaho back into British Columbia.

1. Power.-At the present time there are three power developments on Kootenay river between Kootenay lake and the mouth of the river.
(a) At Upper Bonnington falls the West Kootenay Light and Power Company have a plant which develops 16,000 horse-power, and two extra units are now being added which will increase the capacity to 36,000 horse power. From this plant power is supplied to light Trail, Rossland, Grand Forks, Phoenix, Greenwood, and Eholt; power is supplied to mines at Nelson, Rossland, Cireenwood and Phœnix, to the smelters at Trail and Grand Forks, and for irrigation purposes in Grand Forks district. The proposed electrification of the C.P.R. between Rossland and Castlegar will be most probably supplied with power by the same company.
(b) The power-house of the City of Nelson Power and Light Company is located at Upper Bomnington falls also. This development is $1,250 \mathrm{k} . \mathrm{w}$. , and supplies power to the city of Nelson for light, for the street railway and for manufacturing purposes, and to a few mines in the vicinity of Nelson.
(c) The West Kootenay Light and Power Company have a development of 4,000 horse-power at Lower Bomnington falls, which is at present used only: as an auxiliary plant.

There are various undeveloped sites in this section of the river and it has been ostimated that $1,000,000$ horse-power (24-hour:) may at any time be developed at a low cost per horse-power.
2. Reclamation. -Through part of Idaho and that part of British Columbia between the boundary and Footenay lake, Kootenay river winds its way through a valley from 1 to 3 miles wide. It low and medium stages the river is fairly well confined to a main chamel and two or three side chammels, but in high water the vast area of bottom land becomes a lake. This bottom land, if reclamed, is very valuable, and several investigations have already been made, and it is anticipated that more thorough studies will be made in the near future. It is an international proposition.
3. Complications may set in at any time on the international streams and for that reason it is essential to know the amount of water flowing from one country into another where it is at all possible.

2. Kis b...

SESSIONAL PAPER No． $25 f$
Discharge Measurements of Kootenay River near Glade，B．C．， 1913.

	Date．	Hydrographer．	Meter No．	Width．	Area of section．	$\begin{aligned} & \text { lleas } \\ & \text { Velomits } \end{aligned}$	Gauge Height．	Discharge．
	1913.			Feet	$\therefore \mathrm{Sf}$ ． 17	Ft．per sec．	Feet．	Sec．－ft．
June	13	C．E．R．\＆H．G．L．	1，040	720	16，400	$9 \cdot 63$	24.5	154，000
July	3	H．G．L．©A．J．Y．．	1，527	－	12．｜till	$5 \cdot 35$	19.9	104，000
	31.	H．G．L．\＆A．J．V．	1，527	18.5	2． 3.11	（i． 21	$11 \cdot \ldots$	55，500
Aug．	i）	C．G．R．\＆J．A．E	1，672	till	5.451	6．14	13．5．5	51，400
Sept．	1i	H．G．L．\＆A．J．V．	1.527	610	13，950	$4 \cdot 81$	11． 51	33，600
Nov．	－ 27.	C．E．R．\＆A．J．V．．	1.527	550	4，940		7．82	15，100
	1914.							
Jan．	31.	A．J．V．\＆C．E II	1，048	549	1．$\because=1$	$2 \cdot 2$	$7 \cdot 11$	13，000

Note．－This station was established by C．E．Richardson and maintained during 1913 conjointly by W．J．E．Bikerv Provincial Water Kights Engineer，Nelson，and the Dominion Hydrographic Survey：

Monthly Discharge of Kootenay River near Cilade，B．C．，for 1913.
（Drainage area，19，000 square miles．）

Discharge in Second－Feet．
に！べに。

Montin．						
	Maximum．	Minimum．	He：an．	$\begin{gathered} \text { Per } \\ \text { - quare } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area．	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-feet. } \end{gathered}$
May．	177，200	32，300	45，400	$2 \cdot 39$	$2 \cdot 7$	2，790，000
June．	1154，000	93，000	126，000	6． 6.3	7．40	－，500，006
July．	119， 1180	56，300	78，900	1．1．5	4．－5	4，850，000
August	54，700	32，100	42，900	$2 \cdot 26$	$2 \cdot 61$	2，640，000
September．	33,600	23，100	28，600	$1 \cdot 50$	1.67	1，700，000
October．．．	2－． 1101	18，000	19，400	1．112	1.18	1，190，000
November	17，000	15，000	15，900）	11.84	11.91	946，000
I）ecember	15.000	Y． 9100	12．4（0）	118.5	1）． 75	762，000

[^22]Daily Gauge Heights and Discharges of Kootenay River near Glade, B.C., for 1913.

SESSIONAL PAPER No． $25 f$
Daily Cauge Heights and Discharges of Kootenay River near Cilade，B．C．， for 19：3．－Contimul．

	July．		August．		－ッ！リット．1．		いいい）		Noyember．		Dem：	
	（1：111 Height	I）is－ 1 ！auma	Gauge Height	I）is． chare．	（ial… Height	I）is－ charge	Cauge Height	［）is－ charge	（iauge $11,121.1$	$\begin{aligned} & \text { I)is- } \\ & \text { •hare" } \end{aligned}$	（1：1110． Height	I）is－
	Feret．	see．－ft．	Feet．	Sec．－ft．	Feet．	Sece－ft．	Feet．	Sece．ft．	Feet．	S＇ec．－ft．	Feet．	Sereft．
1	2110		$1+t$	54，700	11.	32． 104	$9 \cdot 3$	29.100	8.5	15．1111	$7 \cdot 6$	1．i．1411
\therefore	$\therefore 1$	ハい－． 11×1	$14:$		11.3	$31.8(6)$	11	21.6081	$\therefore \cdot \underline{2}$	16， 604	－	15． 1000
．	11.	111． 11111	$14 \cdot 2$	53， 100	11.1	30.900	11	21.6010	－-		$7 \cdot 8$	15，（1）0）
\％	1210.0 .3	112．1111	$1+1$	52． 31010	11 ：	32， 100	\％；	21． L $^{\text {a }}$	－	16，6， 0	7.7	14．6m）
i	$19 \cdot 45$	111：11161	13.9	（11） 418	11.7	33，600	！ 11	20， 400	－ 1	16.200	$7 \cdot 7$	
\because	111	97， 0100	$13 \cdot 5$	－71． 1164	11.5	33，3011	！ 1 － 1	？（1）． 4141	-1	16．201）	7．6	14，200
－	1－	97.600	$13 \cdot 6.5$	18，900	11.4	32， 7 （6）	$\because \cdot$	20.10101	¢． 1	16，200	$7 \cdot 6$	14．200）
8	小 ：	93，200	$13 \cdot 5$	5i． 5101	11.4	32.701	＂11	20.1900	－ 1	16．200）	$7 \cdot 5$	13．900
＂，	i	¢1．3（11）	13.5	15． 4101	11.4	32.700	$\because 1$	\therefore－1000	$\therefore 1$	16，2010	7．5	13，900
111	1）\because	88，900	1：3．4	15． 1901	111	\because－ 30.	9．1）	20，000）	$8 \cdot 1$	12．	7．4	1：． 514
11	1－10；	87.000	13.3	46，300	117	32． 700	－！	111［191	－ 11	15， 8100	$7 \cdot 4$	13，500
1.	$17 \cdot 8.8$	85，000	1：2．5	45，900	11．	31， 3101	－3：9	19．6）（1）	$8 \cdot 11$	15，800	$7 \cdot 3$	13，104
1.3	$17 \cdot 65$	－\therefore（1141	$13 \cdot 2$	15.500	111	「：， 411	s．is	11.141	S．0	$1 .$.	\therefore－	13， 10%
$1 /$	1.1 .8	－111101	13.1	11． ¢111 1	111	：30．300	－＇	19，20）	－ 1	15，810	$7 \cdot 2$	1－200
1	$17 \cdot 0$	79，2010	1：3 11	14．1114）	111	$\therefore{ }^{\prime \prime} .1101$	－！	14.6	$8 \cdot 1$	15： 517	71	12，400
115	164.5	if6．900	129	43，204）	$111:$	－$-\mathrm{S}^{\prime \prime} 1$	，	19．20）	4.11	1.5714	$7 \cdot 1$	12． 1 （1）
$1:$	11.18 .5	－7．1111）	12－	12．400）	111.5	27.3010	－	19，2010	－＂	1%	$7 \cdot 0$	1 $\therefore 11611$
in	16.35	71． 1191	$12 \cdot 7$	＋1．600	111.5	27.3610	－	19， 2010	S01	1.15	$7 \cdot 11$	12，010）
1．	11.1 .8	19\％ 4101	$12 \cdot 6$	10．8（0）	111	26， 210%	x．i	19） $2\left(\begin{array}{l}\text {（ }\end{array}\right.$	S． 1	15，いい	1i）	11．4．110
2.1	1．5＂	176．690	$12 \cdot 5$	10， 100	111.	$26,10 \%$	8.7	1． 411	－ 11	15，80）	（i）！	11． 610
21.	$1 ; 7$	（i．5．，\111	12.1		（10．2				S． 11			
	1.5		129		110．2	25， 6001	8.7	1． 411	4.11	15． 114	i）	11，300
23	1.51	45．900	$12 \cdot 1$	37，300	1111	$\because 5.1111$	－1i	1－1911	$8 \cdot 1$	15.8010	13.7	11．1111
－7	1.51	64．90）	11.6	35，900）	10.11	\therefore－tiel	$\checkmark 1$.	15，400	$4 \cdot 19$	15，＊11	6.7	11，000
2.5	10.5	64.1001	$11 \cdot \lambda$	［35， 200	110.11	こと．がい	$\therefore \cdot 6$	18．400	－ 11	15． 500	$6 \cdot 6$	111．AIN1
26	1：7	633，100	11 －	35，2（1）	$9 \cdot 9$	24.100	¢．${ }^{\text {j }}$	18．4（1）	8.1	15，8100	（i）ti	10，（6）\％
27	15.3	（i2，20（0）	117	34，500	$3 \cdot 1$	24.100	\checkmark ．	1－12：0）	$7 \cdot 9$	！．i． 4×1	13.6	10， 200
\because	$15 \cdot 1$	（111． f（1）$^{\text {a }}$	11.6	33． 9 （\％）	$!$	23.600	\checkmark	1－110\％	$7 \cdot 9$	15.4010	15.5	10． 210
\therefore	1．71	－ 4 ，－1411	11.5	33， 3101	！	23.6016	\cdots	1－110．1	7－4	15． 4101	（19．5）	111．S111
311	17 －	ST， 900	11 t	32，700	9.7	23.1610	$8 \cdot 5$	1－1．171	$7 \cdot 4$	15．（1）（1）	6.1	9．＇141\％
$: 1$	1\％ 1	26，（0）\％	11.3	32.100			$5 \cdot 5$	15， 10 （1）			ij． 1	9，900

NO．＇2（＇REFK．
Location．－No． 2 ereek flows easterly into（＇olumbia river from the Welkirk range，about 6 miles from Wilmer．The gauging station is located about 1 mile from the mouth of the highway bridge on road from Wilmer to Forster＇s Landing．

Records Acailable．－June to October，1912；May to December，1913．
Winter Conditions．－Severe（ $-40^{\circ} \mathrm{F}$ ．），with light snowfall，as may be found in semi－arid distriets in British Columbia．The river is generally frozen from November to April．

Genge－－A staff gauge is used and read by Mrs．Colin Mackay of Mormish ranch．Wilmer．

Chamel．－The channel winds immediately above the seetion and the water is always very fast；the station is not suitable for metering，but is the most desirable one to be obtained except by erecting a cable station．

Discharge Measurements．－Five measurements in 1912，and right in 191：3 were taken from the highway bridere．

Accuracy－－Accurate gatuge heights are ohtained，but the measuring section is very poor．These results guaranteed only to be within 15 and 20 per cent．

5 GEORGE V., A. 1915
Discharge Measurements of No. 2 Creck near Forster's Landing for 1912-13.

	Date.	Hydrographer.	Meter No.	Width.	Area of Section.	Mean Velocity.	Gauge Height.	Discharge.
	1912.			Feet.	Sq.it.	Ft. per sec.	Feet.	Sec.eft.
May	29.	H. C. Hughes	1,055	32	64	4.9	$0 \cdot 84$	314
June	13.	do	1,055	53 54	114	$6 \cdot 6$ $6 \cdot 04$	1.70 1.68	741 689
	24.	do	1,055	57	116	$6 \cdot 4$	1.70	745
Sept.	28	C. E. Richardson	1,055	32	43	$4 \cdot 74$	$0 \cdot 40$	203
	1913.							
May	16.	C. E. R. \& J. A. E.	1,672	35	402	$4 \cdot 58$	$0 \cdot 54$	${ }_{1}^{184}$
June	19.	J. A. Elliott......	1,672	90	161	$5 \cdot 78$	$1 \cdot 55$	${ }^{2} 933$
July	11.	C. E. Richardson.	1,048	88	155	$7 \cdot 00$	1.70	${ }^{3} 1,090$
"	15.	J. A. Elliott..	1,672	90	209	$6 \cdot 62$	$2 \cdot 00$	${ }^{3} 1,350$
"	30.		1,672	90	130	5.81	1.00	754
Sept.	3.	C.E.R. \& R. G. S	1,048	70	73	$5 \cdot 50$	$0 \cdot 50$	404
	13.	J. A. Elliott.	1,672	70	71	$6 \cdot 30$	$0 \cdot 42$	${ }^{3} 437$
Nov.		C. E. Webb.	1,048	34.5	36.2	$3 \cdot 32$	-0.22	120

Note. Gauge shifted $0^{\prime}-1^{\prime \prime}$.
${ }^{2}$ New Gauge.
${ }^{3}$ Different section.
Monthly Discharge of No. 2 Creek near Forster's Landing for 1913.
(Drainage area, 200 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	$\begin{gathered} \text { Per } \\ \text { square } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	Total in acre-feet.
May.	805	190	306	1.53	1.76	18,800
June.	1,930	908	1,223	$6 \cdot 11$	6.82	72,600
July.	1,320	584	- 986	4.93	$5 \cdot 68$	60,600
August...	1,545	486	569	$4 \cdot 35$	5.02	53,400
September.	1,170	344	501	$2 \cdot 50$	$2 \cdot 79$	29,800
October...	344	216	282	1.41	$1 \cdot 63$	17,300
November	257	60	129	$0 \cdot 65$	0.73	7,650
December ${ }^{1}$	170	60	106	$0 \cdot 53$	$0 \cdot 61$	6,520

Note.- Last 10 days in December estimated.

SESSIONAL PAPER No. $25 f$
Daily Gauge Heights and Discharges of No. 2 Creek near Forster's Landing for 1913.

Daily Gauge Heights and Discharges of No. 2 Creek near Forster's Landing for 1913.-Continued.

		July		August.		September.		October.		November.			
	Oa.	(「atime Height	Disrhater	(i muse Height	Dis- (harrer	(iatuge Height.	$\begin{gathered} \text { Dis- } \\ \text { charge } \end{gathered}$	Gauge Height.	Discharge	Gauge Heirht	Discharge	Gauge Height	Discharge
		lient	Sec.-ft.	Fet.	Suc.-it.	Feet.	Sec.-ft.	Feet.	See.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.
i		1.8	1,170	1.1	905	11.9	634	0.3	344	$0 \cdot 1$	257	-0.3	(10)
		1.11	1,245	1.7	1,100	$0 \cdot 7$	335	$0 \cdot 3$	344	$0 \cdot 0$	216	-0.3	90
3		$1 \cdot 4$	908	$2 \cdot 1$	1,395	$0 \cdot 8$	584	$0 \cdot 3$	344	-0.2	132	-0.4	(6)
t.		$1 \cdot 3$	849	$2 \cdot 0$	1,320	$1 \cdot 3$	849	$0 \cdot 3$	344	-0.2	132	-0.2	132
i)		$1 \cdot 3$	849	1.8	1,170	1.4	1,170	$0 \cdot 2$	300	-0.1	257	-0.2	13.2
6		$1 \cdot 1$	908	1.7	1,100	$1 \cdot 1$	686	11.1	257	$-0 \cdot 2$	132	-0.2	132
7		1.9	1,245	$1 \cdot 8$	1,170	0.8	-3t	11.1	257	$-0 \cdot 1$	1711	-0.3	(14)
,		1.7	1,100	$2 \cdot 3$	1,545	$0 \cdot 8$	in 1	$0 \cdot 2$	300	-0.2	132	-0.3	90
9		1.7	1,100	$1 \cdot 6$	1,030	11.7	535	$0 \cdot 3$	344	-0.2	132	-0.2	132
10.		$1 \cdot 9$	1,245	1.7	968	11.6	486	$0 \cdot 3$	344	-0.2	132	$-0 \cdot 3$	91
11.		1.7	1,100	1.5	968	$0 \cdot 5$	437	0.2	300	-0.2	132	-0.2	12.2
12.		1.5	968	1.5	968	11.5	437	$0 \cdot 2$	300	-0.2	132	-0.2	132
13.		$1 \cdot 4$	908	$1 \cdot 1$	1,030	$0 \cdot 4$	390	$0 \cdot 2$	300	-0.4	60	-0.2	132
11		$1 \cdot 0$	6856	$1 \cdot 1$	738	$0 \cdot 4$	390	$0 \cdot 1$.	257	-0.4	60	-0.1	1.11
1.		11.11	634	1.0	6456	$0 \cdot 3$	544	11.1	257	-0.2	132	-0.2	13 -
16		0.8	584	0.8	584	11.4	31:11	0.2	300	- 11.2	132	-11.3	(4)
17.		0.9	63.4	0.7	535	$0 \cdot 4$	390	$0 \cdot 1$	258	-11.2	132	-11.7	
18.		0.9	633	11.7	535	$1 \cdot 1$	656	$1 \cdot 1$	257	-11.2	132	-1. ${ }^{1}$	132
19.		$1 \cdot 3$	849	0.6	486	11.1	486	$11 \cdot \frac{1}{1}$	300	--11.	132	-11.2	132
20.		1.4	9105	11.6;	486	$0 \cdot 5$	437	$0 \cdot 1$	25%	-11.2	132	-11.	132
21.		$1 . \$ & 1,170 & 11.1 & 486 & 11.6 & 486 & $0 \cdot 1$	257	-11.7	$\mathrm{b}_{6} 0$	-0.25	111						
22.		$1 \cdot 9$	1,245	11.7	53.5	11.4	390	11.1	297	-11.1	60		
23.		$2 \cdot 0$	1,320	$1 \cdot 1$	738	$0 \cdot 4$:3'11	11.1	293				
$\because 4$.		$1 \cdot 9$	1,245	$1 \cdot 3$	849	1.17	$3(1)$	11. 1					
25.		$2 \cdot(1$	1,32C	$1 \cdot 2$	792	11.4	390	$0 \cdot 1$	257				
26.		1.4	1.170	$1 \cdot 2$	792	11.4	390	11.2	3011				
27.		$1 \cdot+i$	1,030	$1 \cdot 3$	849	$0 \cdot 4$	3: ${ }^{\text {a }}$	11.1	250	-11.?			
$2{ }^{2}$		1.6	1,030	$1 \cdot 0$	686	$0 \cdot 3$:34	$0 \cdot 0$	216				
29.		1.5	! 1 ¢	$1 \cdot 3$	849	11.5	437	$0 \cdot 0$	216				
3 ,		$1 \cdot 1$	735	$1 \cdot 2$	7:	0.4	390	$0 \cdot 1$	295				
. 1		$1 \cdot 2$	79?	1:3	$\therefore 47$			$0 \cdot 1$	258				

OTTERTAIL RIVER

Location.-The gauging section is located in township 27, range 19, west inth meridian 5_{2}^{1} miles west of Field. just above the highway hridge on road Field to Ottertail. (Old C.P.R. grade.)

Records Available.-June to October, 1912; May to October, 1913.
Winter Conditions.-Winters in this district are very severe, the thermometer going as low as $-40^{\circ} \mathrm{F}$. The snowfall is heavy, and even in the valleys snow is on the ground for from four to six months in the year. The river is generally frozen from November to April.
 two or three times a week.
('hemul.-The chamel is straight for oto yark above and below the sedion. The water is swift and there are riffles immediately above and below.

Discharge Measurements.-In 1912, four measurements were made from temporary foot-bridge. In 1913, six measurements were made by means of "cable carrier system."

Accuracy.-Gauge readers are infrequent; the measuring section is not very good; these results are guaranteed to be within 15 per cent.

SESSIONAL PAPER No. $25 f$

Discharge Meastrements of Ottertail River near Field for 1913.

Monthly Discharge of Ottertail River near Field for 1913.
(Drainage area, 90 square miles).

5 GEORGE V., A. 1915
Daily Gauge Heights and Discharges of Ottertail River near Field for 1913.

	Day.	May.		June.	
		Gauge Height	Discharge	Gauge Height	Discharge
		Feet.	Sec.-ft.	Feet.	Sec.-ft.
1		$2 \cdot 2$ 2.2	50 50	$4 \cdot 1$ 4.2	1,030 1,130
3		$2 \cdot 2$	50	$4 \cdot 3$	1,240
4		$2 \cdot 2$	50	$4 \cdot 2$	1,130
\%		$2 \cdot 1$	40	$4 \cdot 1$	1,030
11		$2 \cdot 1$	40	3.9	830
7.		$2 \cdot 2$	50	$4 \cdot 0$	930
8		$2 \cdot 3$	60	$4 \cdot 2$	1,130
9.		$2 \cdot 4$	70	$4 \cdot 4$	1,3.50
10.		$2 \cdot 3$	60	$4 \cdot 3$	1,240
11.		$2 \cdot 2$	50	$4 \cdot 2$	1,130
12.		$2 \cdot 3$	60	$4 \cdot 1$	1,030
14.		2.4	70	$4 \cdot 0$	930
15.		$2 \cdot 4$	70	$3 \cdot 7$	740
16					
17.		$2 \cdot 3$	60	$3 \cdot 5$	490
18		$2 \cdot 2$	50	3.7	650
19.		$2 \cdot 5$	85	$3 \cdot 8$	740
20.		$2 \cdot 6$	103	4.0	930
21.		2.7	125	$3 \cdot 9$	830
22.		2.7	125		740
23.		$2 \cdot 8$	14.5	3.7	6.50
24.		$2 \cdot 9$	170	$3 \cdot 6$	570
25.		$3 \cdot 0$	200	$3 \cdot 6$	570
26.		$3 \cdot 2$	290	$3 \cdot 5$	490
27.		$3 \cdot 3$	350	$3 \cdot 5$	490
28		$3 \cdot 5$	490	3.5	490
29.		3.7	650	$3 \cdot 6$	570
30.		$3 \cdot 9$	830	$3 \cdot 6$	570
31		$4 \cdot 0$	930		

Daily Gauge Heights and Discharges of Ottertail River near Field for 1913.-Continued.

PEND D'OREILLE RIVER.
(Also commonly called Clarl's Fork of Columbia River.)
Location.-The gauging station is located 9 miles above the mouth at Waneta, near Mr. A. G. Lang's ranch.

Records Available.-May to December, 1913.
Winter Conditions.-The winter conditions are not severe in this district, the temperature is soldom below $10^{\circ} \mathrm{F}$.; the showfall is fairly heary. The river soldom freezes, and never for more than a day or so at a time. It is clamed that the waters of the Pend d'Oreille are warmer than the waters of other streams of British Columbia.

Gauge.-Staff gauges are used and read two or three times a week, except during high water, when they are read daily by Mr. A. G. Lang.

Channel. - The Pend d'Oreille during its course through Canada is very torrential, and there is no favourable metering section. The section chosen is tery fat in high water, safi-fatory at low water stages, and it annear- 10 han a permanent control.
 date, twelve well distributed measurements have been made.

Accuracy.-Accurate, though somewhat infrequent gauge readings have been made. Conditions for low-water measurements are favourahle and exemt
during high water the results are guaranteed to be within 5 per cent: during June and July accuracy is guaranteed to be within 10 per cent.

General. - Pend d'Oreille river has its source in (a) British Columbia, on the western slope of the Rocky mountains, where it is known as Flathead river; (b) near Helena, Montana, where it is known as ('lark's Fork of the Columbia, Missoula river, and several other local names. It drains about 25,500 square miles in Montana, Idaho, and Washington before entering British Columbia, from whence it flows 16 miles in a westerly direction, discharging into the Columhia river at Waneta, B.('., 200 yards from the international boundary, The total dramage area of Pend d'()reille river is about $26,600 \mathrm{square}$ miles. salmon river drains 480 square miles, being the only important tributary in (amada.

During its course in British Columbia, the Pend d'Oreille has a fall of 423 feet, and four or five sites for large power developments are available. There are not any distinctive falls greater than 10 feet in height. The rise and fall of the river is about 20 feet, and at high water due to narrow and uneven banks and bed the river is very wild.

The gauging and metering section was established in 1912 under the direction of Mr. (i. Ciray Donald. The cable is 1_{4}^{1} inches in diameter and has a clear span of 610 feet. Measurements are made from a cable car. During 1913, the provincial district engineer, Water Rights Branch, Nelson, and the British Columhia Hydrographic surveys co-operated on this station until October, when the British Columbia Hydrographic Surveys took complete charge.

Discharge Measurements of Pend d'Oreille River near Waneta, B. C. 1912-13.

Date.	Hydrographer.	Meter No.	Width.	Area of section.	Yean Velocity.	Gauge Height.	Discharge.
1912			Feet.	Sq. it.	Ft. per sec.	Fret.	Sec. ft .
$\text { Oct. } 11 .$	Wilmon			$\because, 900$	$3 \cdot 52$	$3 \cdot 89$	10,2(4)
Nov. 15	do			3,250	$4 \cdot 02$	$5 \cdot 14$	13,1010
1913							
Jan. 25	do			2,550	$3 \cdot 16$	$2 \cdot 5$	8,070
Fobl 9	do			2,380	2.94	$2 \cdot 24$	7,000 ${ }^{1}$
Mar. 3.	do			\because, fit6)	$2 \cdot 92$	$3 \cdot 04$	7,620
Mar. 24.	do			2,710	? 311	$3 \cdot 54$	8,660
June 11.	W. E. B. \& C.E.R			111.400	11.40	25.25	119,000
June 25.	H. G. I........			9,940	$10 \cdot 69$	- $4 \cdot 20$	106,000
July 15.	do			7,090	8.40	$11 \cdot 111$	59,600
dus. ${ }^{\text {d }}$	do			4,780	6.0.3	10.24	$28,8(4)$
Sept. 2.				3,380	$4 \cdot 19$	5. 11	14,170
Nov. 6.	C. E. R. \& C.E.W.			2,570	$3 \cdot 16$	$3 \cdot 10$	3,300

[^23]
SESSIONAL PAPER No. $25 f$

Moxthly Discharge of Pend d'Oreille River near Waneta, B. C. for 1913.
Drainaqe area, 26,600 square miles.)

Note.-Pend d'Oreille plus Columbia near Trail gives the discharge of the Columbia flowing into the l'nited states

Daily Gauge Heights and Discharges of Pend d'Oreille River near W'aneta, for 1913.

June.

Crauge Height.	Di=charye
Feet.	Soc.ft.
21.5	い
$2 \cdot 2 \cdot 11$	91,514)
2.2-3	枵, 40\%
\therefore -	97. 219
$2 ? \cdot(1$	98, 1200
23.5	1013.1110)
21.0	11..
$24 \cdot 1$	111.1011
-1 -	112.03)
2.5.11	114, 1100
$\therefore 1$	114.14:0
25.2	$11^{\circ} 1418$
$25 \cdot 3$	11615E1
2.), 3	111.110
25.2	115.110\%
$9.9 \cdot 1$	114.11011
24.11	11. ${ }^{\text {1 }}$ -
$\therefore 1$ -	112.1)(\%)
21.7	111.
2f-6	111,010
$\therefore 1$	1! ' ,
24.4	109.11101
24.3	108, 1100
24.2	108, 1601
24.1	103.0019
223.10	10:3, 11110
$\therefore 1$	
- '	'1.' 1
$\therefore \therefore$ ¢ ${ }^{\text {a }}$	

Daily Giuge Heights and Discharges of Pend d'Oreille River near Waneta, for 1913-Continued.

Dar.	July.		August.		September.		October.		November.		December.	
	Gauge Height	Discharge.	Gauge Height.	Discharge.	Gauge Height	Discharge	Gauge Height.	Discharge	Gauge Height.	Discharge.	Gauge Height.	Discharge.
	Feet.	Sec.ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Feet.	Sec.-ft.	Fcet.	See.ft.	Feet.	Sec.-ft.
1		12,960	10.9	31,200	$5 \cdot 6$	14,600	$3 \cdot 1$	8.340	$3 \cdot 0$	8,100	$3 \cdot 7$	9,780
\because	21.8	90, 100	$10 \cdot 7$	30,500	$5 \cdot 4$	14,000	$3 \cdot 1$	8,340	3. 0	8,100	$3 \cdot 7$	9,780
:	21.5	88,000	$10 \cdot 4$	29,400	$3 \cdot 1$	14,000	$3 \cdot 0$	8,100	$3 \cdot 0$	8,100	$3 \cdot 7$	9,780
4	$21 \cdot 3$	86, 600	$10 \cdot 2$	28,700	$5 \cdot 4$	14,000	$2 \cdot 9$	7,880	$3 \cdot 0$	8. 100	$3 \cdot 6$	9,540
-	$20 \cdot 5$	83, 200	$10 \cdot 0$	28,000	$5 \cdot 3$	13,800	$2 \cdot 9$	7,880	$3 \cdot 0$	8,100	$3 \cdot 6$	9,540
6	$20 \cdot 4$	80,600	9.8	27,300	$5 \cdot 2$	13,500	$2 \cdot 9$	7.880	$3 \cdot 0$	8,100	$3 \cdot 5$	9,300
-	$20 \cdot 1$	78,700	$9 \cdot 6$	26,600	$5 \cdot 0$	13,000	$2 \cdot 9$	7.830	$3 \cdot 1$	8,340	3.4	9,060
,	$19 \cdot 3$	76,700	$9 \cdot 4$	26,000	$4 \cdot 8$	12,500	$2 \cdot 9$	7.880	$3 \cdot 1$	8,340	$3 \cdot 3$	8,820
9	19.5	74,800	$9 \cdot 1$	24,900	$4 \cdot 6$	12,000	$2 \cdot 9$	7,880	$3 \cdot 1$	8,340	$3 \cdot 2$	8,580
11.	$19 \cdot 1$	72,200	S.9	24, 300	$4 \cdot 5$	11,800	2.8	7,660	$3 \cdot 1$	8,340	$3 \cdot 2$	8,580
11	$15 \cdot 7$	69,800	8.7	23,600	$4 \cdot 4$	11,500	$2 \cdot 9$	7,880	$3 \cdot 2$	8,580	$3 \cdot 1$	8,340
12	$18 \cdot 3$	67,300	$9 \cdot 5$	23,000	$4 \cdot 4$	11,500	$3 \cdot 0$	S, 160	$3 \cdot 2$	8,580	$3 \cdot 1$	$8,3 \times 0$
13	18.0	63,500	8.2	22,000	$4 \cdot 3$	11,300	$2 \cdot 9$	7.880	$3 \cdot 2$	8,580	$3 \cdot 0$	8,100
14	17.5	62,600	$8 \cdot 0$	21,300	$4 \cdot 1$	10,800	$2 \cdot 9$	7,886	$3 \cdot 2$	8,580	$2 \cdot 9$	7,880
1.5	$17 \cdot 1$	60, 2C0	$7 \cdot 9$	21,000	$4 \cdot 0$	10,500	$2 \cdot 9$	7,880	$3 \cdot 2$	8,580	$2 \cdot 9$	7,880
16	$16 \cdot 6$	57,400	7.8	20,700	$4 \cdot 0$	10,500	$3 \cdot 0$	8,100	$3 \cdot 3$	8, 820	$2 \cdot 8$	7,660
17	$16 \cdot 3$	55, 700	$7 \cdot 6$	20,100	3.9	10,300	$3 \cdot 0$	8,100	$3 \cdot 3$	8,820	2.8	7,660
$1 \times$	(11.11	34,000	$7 \cdot 5$	14,807	$3 \cdot 9$	10.300	$3 \cdot 6$	8,100	$3 \cdot 4$	9,060	2.7	7,440
11	$15 \cdot 6$	51,900	$7 \cdot 3$	19,200	$3 \cdot 8$	10,000	$3 \cdot 0$	8,100	3.4	9,060	$2 \cdot 7$	7,440
211.	$15 \cdot 0$	48,700	7-2	18,900	$3 \cdot 7$	9,780	$3 \cdot 0$	8,100	$3 \cdot 4$	9,060	$2 \cdot 6$	7,220
$\because 1$	$14 \cdot 7$	47,200	$7 \cdot 0$	18,300	$3 \cdot 7$	9,780	$3 \cdot 0$	8,100	$3 \cdot 5$	9,300	$2 \cdot 5$	7,000
\because	$14 \cdot 3$	45,300	$1 \cdot .8$	17,800	$3 \cdot 7$	9,780	2.9	7,880	$3 \cdot 5$	9,300	$2 \cdot 4$	6,800
23	13.9	43,400	6.7	17,500	$3 \cdot 6$	9,540	$\underline{2.9}$	7,880	$3 \cdot 5$	9,300	$2 \cdot 3$	6,600
24	13.5	41,600	$6 \cdot 5$	17,000	$3 \cdot 6$	9, 240	$2 \cdot 9$	7,880	$3 \cdot 6$	9,540	$2 \cdot 3$	6,600
25	1\%.3	39,800	$6 \cdot 4$	16,700	$3 \cdot 5$	9,300	$\because \cdot 8$	7,660	$3 \cdot 6$	9,540	$2 \cdot 3$	6,600
29	12.8	38,600	$6 \cdot 3$	16,400	$3 \cdot 5$	9.300	$2 \cdot 8$	7,660	$3 \cdot 6$	9,540	$2 \cdot 3$	6,600
27	$12 \cdot 5$	37.400	$6 \cdot 2$	16,100	$3 \cdot 4$	9,060	$2 \cdot 8$	7,660	$3 \cdot 6$	9.540	$2 \cdot 3$	6,600
\because	$12 \cdot 1$	35,800	$6 \cdot 0$	15,600	$3 \cdot 3$	S,820	2.8	7.660	$3 \cdot 7$	9,780	$2 \cdot 2$	6,400
29	11.8	34,600	$5 \cdot 9$	15,300	$3 \cdot 2$	8,580	$2 \cdot 8$	7,660	$3 \cdot 7$	9,780	$2 \cdot 2$	6,400
$\because 1$	11.4	33,1C6	$5 \cdot 6$	15,100	$3 \cdot 2$	8,580	2.8	7,660	8.7	9,780	$2 \cdot 1$	6,200
31	11.2	32,400	$5 \cdot 7$	14,800			$2 \cdot 9$	7,880		$2 \cdot 1$	6,200

SLOCAN RIVER.

Location.- In Slocan Junction precinct, Nelson water district, about one mile from the mouth on the highway bridge near Crescent Valley.

Winter Conditions.-The snowfall is fairly heavy, but the thermometer rarely falls below zero, and the river seldom freezes.

Gauge.-Vertical staff gauge, fastened to bridge cribbing.
Channel.-Straight above and below the section for 100 yards and inclined to shift.

Discharge Measurements.-Seven well distributed measurements were made in 1913 from the traffic bridge near Crescent valley.

Accuracy.-The meterings are reliable, and the gauge readings are frequent. The chamel is shifting, and the control does not appear to be permanent. It is clamed that during high water the Kootenay river causes a backwater effect on the gauge. Accuracy, January to May, 15 per cent; June to August, 20 per cent; September to December, 10 per cent.
(ieneral.-The results herewith are obtained through the courtesy of W. J. E. Biker, Provincial Water Rights Engineer, Nelson District, who maintained the station during 1913. These results are published to show the discharge of Kootenay river at Bomnington falls. The British Columbia Iydrographic Survey gauging station on Kootenay river is below the mouth of Slocan river.

SESSIONAL PAPER No. $25 f$
Moxthly Discharge of Slocan River near Crescent Valley.for 1913.
(Drainage area, 2,100 square miles.)

Month.	M- Hh\%M: IT Second-Feet.				lit.o.off.		
	C1avmanal	Minimum.	Mean.	ror square mile.	Depth in inches on Drainage area.	Total 1 n Acre-feet.	Accuracy
January	750	530	65.5	$0 \cdot 55$	$0 \cdot 67$	40,300	${ }^{\circ}$
February	4	4.30	640	11.5	11. 31	35,500	C
March	1.6	\because	455	0.35	0. 44	28,000	${ }^{\circ}$
April	4,230	330	2,290	$2 \cdot 04$	$2 \cdot 23$	136,000	C
May	16,160	3,360	9,760	8.71	$10 \cdot 04$	600,000	(
June	22,000	10,000	16,000	14	$15 \cdot 93$	952,000	1)
July	10,500	4,230	7,370	$6 \cdot 54$	$7 \cdot 59$	453,000	D
August	4,140	2,600	3,370	$3 \cdot 01$	$3 \cdot 47$	207,000	$1)$
September	3,900	2,350	3,120	$2 \cdot 78$	$3 \cdot 10$	186,000	1
October	2,350	1,610	1,950	1.7.	$2 \cdot 03$	122,000	$1:$
November	1,700	1,350	1,520	1,36 0.73	1,32	90,400 50.700	13
December, 1912	950	700	520	$0 \cdot 6$	$0 \cdot 84$	50,00	
lear	22,000	290	4.060	.	43.50	2,899,900	

SPILLIMACHEEN RIVEI.
Location.-The gauging section is located just outside the Railway Belt, about two miles from spillimacheen Latnding on the highway on mat up the Spillimacheen valley.

Records Available.-June to October, 1912; June to November, 1913.
Winter Conditions.-The winter conditions in this district are severe ($-40^{\circ} \mathrm{F}$.) with heavy snowfall. The river is generally frozen from November to April.

Gauge.-A vertical staff gauge is used and read two or three times a week by J. Montgomery.

Channel.-The channel is straight above and below the section for 50 yards. The control is a gravel bar, and there is a pronounced riffle at low water 25 yards below the section.

Discharge Measurements.-Measurements are made from the downstream side of the highway bridge. In 1912, six measurements were made, and in 1913, eight were made.

Accuracy.-The gauge readings are infrequent, the measuring section is wome. there is a possibility of batkwater from the Colmmhan durime high water, these results should be within 10 per cent.

Discharge Measurements of Spillimacheen River near Spillimacheen Landing 1912-13.

Date.	Hydrographer.	Meter No	Width.	Area of section.	Mean Velocity.	Gauge Height.	Discharge
1912.			Feet.	Sif. ft	Ft. per sec	Feet.	Ser.ft.
May 31	H. C. Hughes	10.5 .5	119	46.4	$2 \cdot 43$	1.30	1,120
June 17		10.5	129	58.5	$4 \cdot 70$	$2 \cdot 20$	2,740
June 19...	.	105.3	124	620	$5 \cdot 52$	$2 \cdot 55$	3.450
July 6	,	10.55	129	565	$4 \cdot 15$	2.2.	2.750
July 19.		1055	124	599	$5 \cdot 18$	$2 \cdot 35$	3.1040
Sept. $29 .$.	C. E. Richardson...	10.5 .5	114	88.	1.45	11.42	554
1913.							
May 20	J. A. Elliott	1672	117	466	2-60	$1 \cdot 17$	1,210
June ? ${ }^{\text {a }}$		1672	123	608	$7 \cdot 39$	2.75	4.420
July 11	C. E. Richardson	1048	123	570	$6 \cdot 60$	$2 \cdot 60$	3,880
July 27	J. A. Flliott	1672	124	613	6-60)	$2 \cdot 57$	4,070
July 30.		1672	122	571	$4 \cdot 70$	$2 \cdot 11)$	2,710
Sept. 3..	C. E. R and R. G. S.	1045	118	490	$3 \cdot 12$	1-50	1,530
cept. 14	J. A. Elliott.	1672	119	488	$3 \cdot 58$	1.57	1.750
Nov 26.	C. E. Webh	1048	114	330	1.14	0.25	35s

Monthly Discharge of Spillimacheen River near Mouth for 1913.
(Drainage arca, 580 square miles.)

Nore.-* May estimated from half month's records.

SESSIONAL PAPER No. 25f
Daily Gauge Heights and Discharges of Spillimacheen River near Spillima cheen for 1913

Daily Cifuge Heights and Discharges of Spillimacheen River near spillimacheen for 1913.-Continued.

	July .		August.		September.		October.		November.	
D.1.	Gauge Height.	Discharge.	Gauge Height.	Dischareg.	Gauge Height.	Discharge.	Gauge Height	Discharge.	Gauge Height.	Discharge
	Feet.	Sec.-ft.								
I	$2 \cdot 7$	4,230	$2 \cdot 3$	3,170	$2 \cdot 0$	2,480	1.0	1,000	$0 \cdot 5$	575
2	$2 \cdot 7$	4,230	$2 \cdot 5$	3,680	$1 \cdot 7$	1,890	$1 \cdot 1$	1,100	$0 \cdot 4$	505
. 3	$2 \cdot 6$	3,950	$2 \cdot 6$	3,950	1.4	1,450	1.0	1,000	0.3	440
4.	$2 \cdot 5$	3,680	$2 \cdot 7$	4,230	1.7	1,890	1.0	1,000	0.4	505
3.	$2 \cdot 4$	3,420	$2 \cdot 7$	4,230	1.9	2,270	1.0	1,000	0.4	505
6.	$2 \cdot 8$	4,520	$2 \cdot 8$	4,520	$2 \cdot 1$	2,700	1.0	1,000	$0 \cdot 4$	545
8.	$3 \cdot 2$	5,760	$2 \cdot 6$	3,950	$2 \cdot 0$	2,480	1.0	1,000	$0 \cdot 3$	440
9	$2 \cdot 8$	4,520	$2 \cdot 5$	3,680	1.9	2,270	$1 \cdot 0$	1,000	$0 \cdot 3$	440
9	$\underline{2} \cdot 9$	4,820	$2 \cdot 4$	3,420	1.8	2,070	1.0	1,000	$0 \cdot 3$	440
10.	$2 \cdot 9$	4,820	$2 \cdot 4$	3,420	1.7	1,890	$1 \cdot 0$	1,000	$0 \cdot 3$	440
11.	2.7	4,230	$2 \cdot 4$	3,420	1.7	1,890	$1 \cdot 0$	1,000	$0 \cdot 3$	440
12.	$2 \cdot 5$	3,680	$2 \cdot 4$	3,420	1.7	1,890	1.0	1,000	$0 \cdot 3$	440
13	$2 \cdot 4$	3,420	$2 \cdot 4$	3,420	$1 \cdot 8$	1,070	1.0	1,000	$0 \cdot 3$	440
14	$2 \cdot 3$	3,170	$2 \cdot 1$	2,700	1.7	1,890	$1 \cdot 0$	1,000	$0 \cdot 3$	440
1.5	$2 \cdot 1$	2,700	$1 \cdot 9$	2,270	1.7	1,890	$1 \cdot 0$	1,000	$0 \cdot 3$	440
16.	$2 \cdot 0$	2,480	1.6	1,730	1.7	1,890	1.0	1,000	$0 \cdot 3$	440
17.	$\because \cdot 10$	2,480	1.6	1,730	1.7	1,890	$0 \cdot 7$	730	$0 \cdot 3$	440
15	$2 \cdot 0$	2,480	1.5	1,580	$2 \cdot 1$	2,700	$0 \cdot 7$	730	$0 \cdot 2$	380
19.	$2 \cdot 3$	3,170	1.5	1,580	1.7	1,890	0.7	730	$0 \cdot 2$	380
20.	$2 \cdot 6$	3,950	1.4	1,450	1.5	1,580	$0 \cdot 6$	650	$0 \cdot 2$	380
21.	$2 \cdot 7$	4,230	1.7	1,890	$1 \cdot 3$	1,330	$0 \cdot 6$	650	$0 \cdot 2$	380
22	$2 \cdot 8$	4,520	$2 \cdot 0$	2,480	$1 \cdot 2$	1,210	$0 \cdot 6$	650	$0 \cdot 2$	380
23	$3 \cdot 0$	5,130	$2 \cdot 2$	2,930	1.1	1,100	$0 \cdot 6$	650	$0 \cdot 2$	380
24	$2 \cdot 9$	4,820	$2 \cdot 1$	2,700	$1 \cdot 1$	1,100	$0 \cdot 6$	650	$0 \cdot 2$	380
25.	$2 \cdot 9$	4,820	$2 \cdot 1$	2,700	$1 \cdot 1$	1,100	$0 \cdot 5$	575	$0 \cdot 2$	380
26	$2 \cdot 7$	4,230	$2 \cdot 1$	2,700	$1 \cdot 1$	1,100	$0 \cdot 5$	575	$0 \cdot 2$	380
27.	$2 \cdot 5$	3,680	$2 \cdot 1$	2,700	$1 \cdot 0$	1,000	$0 \cdot 5$	575	11.2	380
28	2:3	3,170	$2 \cdot 1$	2,700	1.0	1,000	$0 \cdot 5$	575	$0 \cdot 2$	380
29.	$2 \cdot 1$	2,700	$2 \cdot 1$	2,700	1.0	1,000	0.5	575	$0 \cdot 2$	380
30	1.9	2,270	$2 \cdot 1$	2,700	$1 \cdot 0$	1,000	$0 \cdot 5$	575	$0 \cdot 2$	380
31	$2 \cdot 2$	2,930	$2 \cdot 2$	2,930			11.4	505	. .	

TOBY CREEK.

Location.- One and one half miles from Athalmer, one mile from mouth, on highway bridge on road from Athalmer to Wilmer.

Records Available.-June to September, 1912; May to October, 1913.
IVinter Conditions.-The winter conditions are severe in this district, the snowfall is light, as in all semi-arid districts in British Columbia. The river is generally frozen over from November to April.

Gauge.-A vertical staff gauge is used and read by Mr. A. L. Peters, Cyderdale Ranch, Wilmer.

Channel.-The section is not at all suitable for metering, but is the only one available without erecting a cable station, the chamel is not straight and the bed is shifting. The water is not at right angles to the bridge and is swift.

Discharge Measurements.-Five measurements were taken in 1912, and nine in 1913, from the highway bridge. These measurements are not reliable.

Accuracy.-The gauge readings are good, the measurements are not reliable: there is a possibility of backwater from the Columbia. Accuracy 20 per cent (guaranteed), but probably within 10 per cent.

SESSIONAL PAPER No. $25 f$
Discharge Measurements of Toby Creek near Athalmer, 1912, 1913.

Note. 1 Different section.
${ }^{2}$ New gauge.
${ }^{3}$ Different section.
${ }^{4}$ Ice conditions.
Mosthly Dischafaz of Toby ('reek near Mouth highway bridge for 1913. (Drainage area, 220 square miles.)

Month.	Discharge in Second-Feet.				Run-Off.	
	Maximum.	Minimum.	Mean.	Per square mile.	Depth in inches on Drainage area.	$\begin{gathered} \text { Total } \\ \text { in } \\ \text { acre-fect. } \end{gathered}$
May ${ }^{1}$	2,290	295	726	$3 \cdot 30$	$3 \cdot 81$	44, 6 \%
June.	3,6.50	1,200	2,133	9. 71	$10 \cdot 82$	126,700
July...	2,470	690	1,487	6.76	7.79	91,000
August.	1,960	690	1,230	$5 \cdot 89$	6.45	75,600
September.	1,530	445	713	$3 \cdot 24$	$3 \cdot 62$	42,400
October....	. 5.5	395	441	$2 \cdot 00$	$2 \cdot 31$	27,100

[^24]1) Ahy (iatige Heights and Dincharges of Toby (reek near Mouth for 1913.

YOHO RIVER.
General.-There is no regular gauging station on Yoho river. The discharges are deduced from the discharges of Kicking Horse river, above and below the mouth of the Yoho i.e. near No. 2 tunnel, and near Field.

Winter Conditions.-The winter conditions are very severe in the Yoho drainage, the thermometer dropping as low as $-50^{\circ} \mathrm{F}$.. The snowfall is very heavy, particularly in the upper reaches. The river remains frozen for three or four months each year.

Monthly Discharge of Yoho River at Mouth for 1913.
(Drainage area, 75 square miles.)

M1, 14	Maximum.	Minimum.	Mern.	$\begin{gathered} \text { Per } \\ \text {-quare } \\ \text { mile. } \end{gathered}$	Depth in inches on Drainage area.	```Motal```
June	2,140	548	1,260	$16 \cdot 5$	14.7	74.501
July........	2,580	493	1.3.30		23.5	94,100
August....	2.520	filis	1,610	21.1	24.7	99, (\%)1
	870	1 1ii)	342	1.1)	S. 1	20, 4 (1)
October...	191	73	103	$1 \cdot 1$	1.fi	6,330
November.	s:	62	74	1.11	$1 \cdot 1$	4.4100

Note.-Discharges deduced from discharges obtained on Kicking Horse river above and below mouth of Ioho river.

Takakkaw Falls-Yoho Valley near Field, I3.O

Daily Discharges of Yoho River near Field for 1913.

MISCELLANEOUS METERING STATIONS.

INCOMAPPLEUX RIVER.

Location.-Immediately outside the southern limit of the Railway Belt 2 miles from the mouth near Beaton, on the Northeast Arm, Arrow Lakes.

Winter Conditions.- The snowfall is heary but the temperature $\left(-30^{\circ} \mathrm{F}\right.$.) is milder than at Revelstoke, the river freezes over for two or three monthe each year.

Giauge.-Due to a probable effect of backwater, the gatuge could not be located on the bridge between Commapleux and Beaton, from which measure. ments are made. A staff gauge was established near Burhidge's ranch in Maybut due to excessive highwater and drift wood it was washed out in June. A new gauge was set in a slightly different location and tied into same bench mark:- This gauge was found to be in riffle in low water, and a third gauge was set. No relation could be obtained between the three gauges.

Chamel.- At the gauge the water is fast, the control hat not been studied, the measuring section is satisfactory.

Discharge Measurements.-Seven well distributed measurements were obtained in 1913.

Acencacy.-Due to great trouble with the gauge reliable daily discharges were not whtained, so the results are not published. The Incomappleux and

SESSIONAL PAPER No. $25 f$

Illecillewaet appear to be similar streams. The dramage areas are about the same, but the discharge of the Incomappleux during the summer months appear: about 30 per cent in exces of the Illicillewaet. During the winter it appeare to fall lower than the Illecillewaet.

Discharge Medstrements of Incomappleux River near Beatonfor 191:\%.

			Meter No.	Width.	Area of section.	Mean Velocity.	Gauge Height.	Di-c! - $-\cdots$
	1913.			Feet.	Sq. ft.	Ft. per sec.	Feet.	\therefore Sc.-ft.
Mas	'	C.E.R.EJ.A.F	1,045	100	635	$\underline{2} \cdot 80$	2.25	1,Stw
	-	J. A. E.	1,672	96	1,130	- ¢1	4.90	18,632
Jul:	8	J.A.E.	1,672	98	966	(i). 14	$5 \cdot 50$	5,93:
fur	18	J. A.E.	1,672	100	1,056	$5 \cdot 82$	5.02	6. 130
	11	J.A.E	1,672	90	1,097	$5 \cdot 39$	$5 \cdot 60$	5,940
Eept.	18	R. G. S. \& C.E. IR	1,048	95	830	+191	4.8	4,050
Nur.	21.	C. E. W	1.048	93	526	$1 \cdot 13$	$2 \cdot 40$	597

Sure I Iair mestaremomp

Monthly Discharge of Columbia River at International Boundary Line for 1913.
(Drainage area, 61, 003 square miles.)

Mosth.					Rus-Off.	
	Maximum.	Minimum.	Mean.	Per square male.	Depth in inches 1 ! Drainage :15世:	Total in acre-fect.
June	428,000	279,000	365,000	$6 \cdot 0.3$	6.73	21,900,000
July.	329,000	156,000	241,000	S. 4.5	4.55	14,500,000
Iugus	184,000	113,000	146,000	2.39	2.76	S,950,000
September	112,000	70,700	94,600	1.55	1.73	5,630,000
いetober	65,800	47,200	54,800	11.	$1 \cdot 04$	3,370,000
November.	47,400	37, 100	41,000	[17	0.75	2.440 .000
Iecember.	37,600	24.800	30,400	0.50	1-5	1, 5\%0, 040

[^25]

INDEX.

Acknowledgments '!
Adams River, Hydrographic data $16 ;$
Agriculture, Coast Division. 11
Agricultural I.ands and Irrigation, Kamloops Division 31
Akolkolex River (near Wigwam), Ilydrographic data 290
Area of Kamloops Division 29
Area and Drainage of Kootenay Boundary Division.
Area and Drainage of Kootenay Boundary Division.
45
45
Arlington mine (Erie)
161
161
Barriere River. City of Kamloops Plant on,
Beaver River (at Sis Mile Creek) Hydrographic data. $3(0)$
Belknap Creek, Hydrographic data $14 \overline{1}$
Blaeberry River, Hydrographic data. $30: 3$
Bluebell mine (Riondell) 4.3
Bolean Creek, Hrdrographic data 159
Bonaparte River (near Asheroft), Hydrographic data 17.
Boulder Creek, Hydrographic data 5
Brandt Creek (at mouth), Hydrooraphic data(above Young Creek), Hydrographic data$6 . \overline{7}$
Columbia River at International Boundary 6)
Bridge River, Hydrographic Survey 140
Bridge River, Undeveloped Power Site. 23
Bugaboo Creek, Hydrographic data
175
175
Campbell Creek, Hydrographic data
$15!$ 4.5
Centre star mine (Rossland)
Centre star mine (Rossland) 1.1
Chehalis River, Hydrographic data 6
Undeveloped Power Site 174
Cherry Creek, Hydrographic data \div
Chilliwak River, Hydrographic data
Undeveloped Power site.Climate, of Coast Divisionif
Kamloops Division. 29
Lootenay Boundary Division
43
Coal and Coke, Tables of Production of Metals in Kootenay Boundary Division 4
Coast Division
Agriculture. 11
Irrigation. 15
Reclamation 16
Climate of 14
Conclusion of IReport of,.. 26
Fishing.14
Industrial Waste 14

Hydrographic data of, 33
Iumbering. $11 i$
 \divIRegular
Vining.
Nunicipal Water Suppls
Power Sites, Developed (Outside the IRailway Belt)Jordan River
Powell River
Puntledge River
Power Sites, Lindeveloped, (in territory alreado covered, not including Vancouver Ialand and other parts ofCoast Division)Bridge River.Chehalis IniverChilliwak RiverCoquihalla River
Green River Jreen River21
riv-alar
117
117
Hydrographic data of Miscellaneous
Metering Stations, List of Miscellanenus
Metering Stations, List of Miscellanenus raphic raphicMesliloet River and Tributaries
North Lillooet River
Rainbow Creek
Raven (Rushton) CreekSilver Creek (near Hope)
(tributary of Pitt River)
Slollicum Creek
South Lillooet River
Report of
Suggested Subdivisions,
Tran-portar!on
Coast Division-Contınued.
Water Power, Coquitlam River 22Gilley Creek
Plant and Stream investigation within the Railway Belt Stave River.$\stackrel{22}{22}$
Coke, in the Kootenay Boundary Divivion Tables of production of Metals, Coal, and22
Coldwater River, (at Merritt) Hydrographic data 183
Columbia River (near Castlegar)Hyarographic data 18
" Golden),
" Revelstoke), " " " 305
" Trail), 311
Coquiballa River, Hydrographic data 76
Undeveloped Power Site 23
Coquitlam River, Hydrographic data 79
Water Power 22
Criss Creek, Hydrographic data 185
Deadman River(near Savona), Hydrographic data 192
Definitions of Terms
Coast.
8
8
Kamloops 8
Kootenay Boundary
Kootenay Boundary
47
47
Domestic and Muninipal Utilization of Water in Kootenay Boundary Division
41
41 45
Drainages, Areas and, of Kootenay Boundary Division
Drainages, Areas and, of Kootenay Boundary Division
Eagle River (at Malakwa), Hydrographic data
194
194
Enterprise mine (Slocan)
44
44
Essell Creek (near Adelphi), Hydrographic data 197
near Grand Prairie 198
Equivalents, Convenient 9
Fraser River, Coast Division, Hydrographic data 81
(near Lytton), Kamloops Division, Hydrographic data 199
Fishing, Coast Division.
Fishing, Coast Division. 18
Gilley Creek, Water Power 90ix)90
Granby Co., mine (Phoenix) 44
45
Green River, Undeveloped Power Site 24
(at Nairn Falls) Hydrographic data 152
t Green Lake 153
Greenstone Creek, Hydrographic data 203
Grichon Creek (above Mamit Lake) 205
Hat Creek, (at Hat Creek Ranch) Hydrographic data. 207
(Hammond's diversion) Hydrographic data 213 213
Upper Station) Hydrographic data. 209
Hefferly Creek (below Hefferly Lake) Hydrographic data. 218
Hefferly Creek (Lower Station) Hydrographic data 215
Hewitt mine (Silverton) 44
Highland mine (Ainsworth) 4Hixon Creek, Hydrographic data
(above Belknap Creek) Hydrographic data 154
Horsethief Creek, Hydrographic data 320
Hydro-Electric Developments in Kootenay Boundary Division 47
Hydrographic Data:
Coast Division. 5.3
Regular Metering Stations 14
Kamloops Division14
Regular Metering Stations. 163
Miscellaneous Metering Stations 291Kontenay Boundary Division.Regular Metering Stations295
Miscellaneous Metering Stations 295
Idaho-Alamo mine (Three Forks) 44
Illecillewaet River (near Revelstoke, B.C.), Hydrographic data 322
(at Glacier), Hydrographic data ,
Industrial Waste, Coast Division
Ingram Creek (near Adelphi), Hydrographic data 222
Ingram Creek near Grand Prairie. 223
Incomappleux River 360
Irrigation, Coast Division. 15
Kamloons Division Agricultural lands and, 31
Lands, Kootenay Boundary Division 46
Ivanhoe mine (Sandon)
224
224
Jacko Creek, Hydrographic data 226
Jones Creek, Hydrographic data
Jones Creek, Undeveloped Power SiteJordan River, Developed Power Site.Jordan River, Developed Power Site.......Kamloops Division
Agricultural Lands and Irrigation24
trea of29Are. of,$\because 9$
Climate of 29
Hydrographic data 161
Miscellancous Metering Stations 291
Regular Metering Stations. 163
Lumbering and Utilization of Water 31
Tamloops Division-ContinuedMetering Stations:
List of Miscellaneous 291
Hydrographic data. Miscellaneous. 291
Regular. 16.3
Mining. 30
Municipal Water Supply 33
Catural Resources
161
161
Report of.
4
uggested subdivisions
33
City of Kamloops Plant 33
Future developments.. 34Other small developments.
Fiching Horse River (near Field), Hydrographic data. 33)
329
(" Golden.)
". (" Nolden,336
Footenay River at Glade 339
K'ootenay Boundary Division $+1$
Area and Draina*es. Climatic Conditions. 41General41
General Characteristics
Hydrographic data.49
29.5Miscellaneous Metering Stations
Regular Metering Stations 295
Metering Stations, List of Miscellaneous. \div
Report ofRegular39
Run-off. 4
Suggested Subdivisions. 43
Domestic and Municipal
Hydro-electric developments
Hydrographic data.
Minin:Resume of proposed work for 1914Timber.
Last Chance mine (Sandon)Le Roi mine (Rossland).
" No. 2 mine (Rossland)4347
No. 2 concentrate mine (Rossland) 45River, Hydrographic (Rossland).4,
Lilloet River, Hydrographic data.
Louis Creek 229
Lumbering, Coast Division.
Kamloops Division 31
I Linn Creek, Hydrographic data
45
Maestro mine (Ainsworth)
Maestro mine (Ainsworth)... Manufacturing, Coast division..Mesliloet River, Hydrographic dataUndeveloped Power Site
Ietals, in Kootenay Boundary DivisionTables of production of2124
Metering Stations, List of Miscellaneous.4
Metering Stations, Regular. 29°
Metering Stations, Miscellancous.
Hydrographic data
14%
14%
Coast Division 201
Iamloops Division 3610
Metering Stations, Regular.
Hydrographic data.\therefore
Coast Division
$1: 1$
$1: 1$
Kamloops Division. 29.
Iethods of Stream Measurements, General \therefore 4:
Mines, Production and power utilized in I'ootenay IBoundary, Division in
IlinineCoast Division.24
Kamloops Division?
Kootenay Boundary Division 4.
Molly Gibson mine (Nelson) 15
Monarch Mine (Field)11Monitor Ajax mine (Ioseberry)
Monte Creck (above Bostock's diversion) ,Hydrogaphic data..$23: 3$(below Summit Lake) I ydrocraphic data
(diversion to Summit Lake) Iydrographic data. $2 . i$
Motherlode mine (Deadwood) 45(Sheep Creek)
25
Municipal Water Supply
Cnat Divitun :Kamloops Division
Municipal, Kootenay Boundary Division, Domestic and use of waterNature and extent oi work239
:ature and extent oi work. 2:" \thereforeSatural IResources of 'Vamloops Division.................
Nicola River (at Merritt) Hydrographic data PAGE. (at mouth) 246
Niskonlith Creek (near Shuswap), Hydrographic dała. 249
No. 1 mine (Ainsworth.) 45
No 2 Creek, Hydrographic data
343
343
Noble Five mine (Sandon) 4
North Lillooet River, Undeveloped Power Site 24
North Thompson River 110
Norton Creek, Hydrographic data. 113
Nugget mine (Sheep Creek) 45
Organization
Ottertail River, Hydrographic data 346
Outline of work for next year 346
8
Paul Creek (below Paul Lake), Hydrographic data. 25.5 257Payne mine (Sandon
Pend d'Oreille River, Hydrographic data 44 349
Plants on Streams investigated within the Railway Belt 22
Powell River, Water PowerPower sites, outside the Railway Belt, DevelopedPower sites, in territory already covered, Undeveloped.Puntledge River, Water Power
Queen Victoria mine (Nelson),
Railway Belt, Plants on Streams investigated within the
IRailway Belt, Developed power sites on streams outside theRainbow Creek, Hydrographic data
18" Undeveloped power site
Raven (Rushton) Creek, Hydrographic data 27
Rawhide mine (Phoenix) endeveloped power site 24
Reclamation, Coast Division 44
Report of Coast Division 51
Hydrographic data 53
Kamloops Division 161
"K Kootenay Boundary Division 293
Run-off, Kootenay Boundary Division 295
Rushton (Raven) Creek, Hydrographic data 42
Ruth mine (Sandon) 24
Scottie Creek, Hydrographic data 264
Second Relief Mill mine (Salmo) 4.5
Sewage disposal, Coast Division วิ6
Seymour Creek, Hydrographic data 151
Shuswap River (at Coteau Falls) Hydrographic data 259 259
Silver Creek (Hope) Hydrographic data 27
" (Pitt) Hydeveloped power site 9 131
". (Pitt) Hydrographic data
". (Pitt) Hydrographic data
Silver Hoard mine (Ainsworth) 25
Silver King mine (Nelson)45
Slocan River, Hydrographic data. 52
Slocan Star mine (Sandon) 44
Slollicum Creek, Hydrographic data 159
Undeveloped power site
25
25
Smelters, Tons treated, power used in Kootenay Boundary Division in35
south "، ". Undeveloped power site 25
35.3
35.3
snius Creek, Hydrographic data. 267
Staff3
Standard mine (Silverton).
4
Stave River, Hydrographic data
13.5
13.5
Water Power
271
271
Stein Creek, Hydrogranhic data $\stackrel{29}{4}$
Streams investigaed within
Sullivan mine (Kimberly).
Table of Metals, coal and coke production in Kootenay Boundary Division 20
Terms, Definitions of 9
Thompson River (at Spence's Bridge), Hydrogranhic data 273
". ". (at Kamloops), Hydrographic data 279 279
". ". (North), Hydrographic data 289
Timber, Kootenay Boundary Division 46
Toby Creek, Hydrographic data 356
Tranquille River, Hydrographic data -
Transportation, Coast Division
Transportation, Coast Division 19
Undeveloped power sites in territory already covered not including Vancouver Island and other parts of Coast Div'n 45Utilization of Water in Kamloons Division Lumbering and31
Utilization of Water, Kootenay Boundary Division $\begin{array}{r}31 \\ 43 \\ \hline\end{array}$
Waste, Coast Division IndustriWater Power, Coast DivisionDeveloped power sites on streams outside Railway BeltI'lants on Streams investigated within Railway Belt..4419Undeveloped Power sites in territory already coveredWater Power, Kamlonps Division

SESSIONAL PAPER No. $25 f$

Water Power developments in connection with mines in Kootenay Boundary Division.. it
East Kootenay.
4
Boundary.
West Kootenay
Slocan district.
Rossland district
Telson district
Ainsworth district
Whitewater mine (Whitewater)
Wonderful mine (siandon)
Yankee Girl mine (Imir)
Imir-Wilcox mine (Imir)
Ioung Creek, Hy drographic data
44

Toho River, Hydrooraplic data

[^0]: O T TAWA
 PRINTED BY J. DE L. TACHÉ, PRINTER TO THE KING'S MOST EXCELLENT MAJESTY

 1915

[^1]: Note.-Accuracy " $\mathrm{B}^{\prime \prime}$ and " C "

[^2]: Note.-Accuracy "A"

[^3]: Note.-Accuracy "C".
 ${ }^{1}$ Est'd.

[^4]: Note-Accuracy "A"

[^5]: Note.- ${ }^{1}$ Different section.

[^6]: Note-Accuracy "A".

[^7]: Note, Accuracy "A" and "B".

[^8]: Note.-Accuracy " 13 ", " C " and " D ".

[^9]: Note.-1Old Gauge No. 1 washed out November, 1912.
 ${ }^{2}$ Gauge No. 2 set December 7. 1912.

[^10]:

[^11]: Note.-There are some diversions for irrigation in the upper watershed not included in these figures.

[^12]: Sote.-Gauge reader, D. McNeill.

[^13]: Note.-1 Measured from bridge.
 ${ }^{2}$ Measured 50 feet below gauge from bridge.
 ${ }^{3}$ Gauge wading 50 feet above.
 ${ }^{4}$ Gauge wading 20 feet above.

[^14]: Note－First thirteen days in May are estimated．

[^15]: Note.-This station gives the amount of water available for storage purposes in Mamit lake. During the spring freshet J. E. Leighton, of Savona, diverts water into Tunkwa lake, and thence into the Three-mile Creek watershed.

[^16]: Note.-Total water diverted in $1913=351$ acre-feet.

[^17]: Note.- ${ }^{1}$ Different measuring section

[^18]: Note.-Gauge reader, E. IR. Ridout.
 i New measuring section.

[^19]: ${ }^{1}$ Ice conditions. ${ }^{2}$ Different gauge. ${ }^{3} 8^{\prime} 1^{\prime \prime}$ on one gauge $=4.48$ on other; zero on one gauge (feet and inches) at top, zero on other gauge (feet and tenths) at bottom.

[^20]:
 a gauge with a different datum

[^21]: Note. - Estimated - some gauge readings were affected by ice conditions

[^22]: Note．－Kootenay river near Glade，B．C．is 12 miles from mouth．
 ${ }^{1}$ Deduced by subtracting the discharges of Columbia at Castlegar from that at＇Trail．

[^23]: Note.-1 Ice conditions.

[^24]: Corote.-1First 17 days estimated.

[^25]: Note.-Deduced by adding discharges of Pend d'Oreille and Columbia at Trail.

